• Title/Summary/Keyword: micropiles

Search Result 44, Processing Time 0.023 seconds

Analysis of Underpinning Construction Cases for Underground Space Expansion (지하공간 확장을 위한 언더피닝 사례분석)

  • Choi, In-Sub;Rhim, Hong-Chul;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.11-12
    • /
    • 2013
  • It is required to response to the demand for new space due to high density of population and buildings in urban area. In particular, in case of big cities such as Seoul where the lack of new construction site due to the depletion of available space, existing buildings must be demolished for new construction. Utilization of urban underground space can be an alternative to solve for urban space problems. There are applications of underpinning methods using micropiles for existing buildings. Sometimes, the difficulties come from the compact space available for new foundation underneath the existing ones. In this paper, a novel underpinning method is introduced which can solve the space restriction problems underneath existing columns.

  • PDF

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Compressive Behavior of Micropile According to Pile Spacing and Embedded Pile Angle in Sand (사질토 지반에 설치된 마이크로파일의 설치간격 및 설치각도에 따른 압축거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Kim, Dae-Hong;Shin, Ju-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.57-67
    • /
    • 2013
  • Micropile technology has evolved continuously since its instruction by Fernando Lizzi in the 1950s. The effects of group micropile have been researched by many researchers. The effects of group micropile differ and change with pile length, pile spacing (S), pile angle (${\theta}$) and pile embedded conditions. In the present study, the effects of resistance increase and settlement reduction from micropiles were investigated through a series of axial load tests. For the study, axial load tests were performed using mat, group micropiles and micropiled-raft (MPR) in various pile spacing and pile angle conditions. As the result, the effects of resistance of micropiled-raft were 80% (3D) to 110% (7D) of the total resistance of mat and group micropile. The effects of settlement restraint of micropiled-raft were 20% (S=3D, ${\theta}=45^{\circ}$) to 70% (7D, ${\theta}=15^{\circ}$) of settlement of mat foundation.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock (풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구)

  • 박성재;정경환;이세훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Performance Evaluation of Waveform Micropile with Different Shapes by Centrifuge Test (원심모형실험을 이용한 파형 마이크로파일 형상에 따른 성능평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1049-1057
    • /
    • 2016
  • The waveform micropile is a type of foundation that has a single or multiple shear keys on the pile shaft, and it is constructed through a jet grouting method as a way to increase the shaft resistance of the bonded area between the pile and the soil. In this paper, a geotechnical centrifuge test was performed to study the axial performance of the waveform micropile from other models. The six test models consisted of three waveform micropiles with a single shear key at three different depths, a waveform micropile with multiple shear keys, a conventional micropile, and a jet grouting micropile. Based on the test results, it was clearly shown that the waveform micropile increased in its bearing capacity compared to the other models without the shear key. Additionally, it was observed that the confining pressure for the location of a shear key is directly related to the increase of the bearing capacity.

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.