• Title/Summary/Keyword: micromachined accelerometer

Search Result 16, Processing Time 0.027 seconds

Golf Swing Diagnosis Equipment based on MEMS Inertial Sensors (초소형 관성센서를 이용한 골프스윙진단장치)

  • Song, Ci-Moo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1761-1766
    • /
    • 2008
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new golf swing diagnosis equipment for golfers. This diagnosis equipment can help golfers monitor and anlalyze their swing posture and therefore modify their swing action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putting club to measure the three-axis acceleration as accurately as possible. This paper presents an efficient autocalibration algorithm to find the offset and sensitivity of accelerometers by only using the static measurement data at six different positions. The experimetnal results on the developed putters show the validity of the proposed algorithm for the new smart putter.

  • PDF

Development of a MEMS Resonant Accelerometer Based on Robust Structural Design (강건 구조설계에 기반한 미소 공진형 가속도계의 개발)

  • Park, U-Sung;Boo, Sang-Pil;Park, Soo-Young;Kim, Do-Hyung;Song, Jin-Woo;Jeon, Jong-Up;Kim, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • This paper describes the design, fabrication and testing of a micromachined resonant accelerometer consisting of a symmetrical pair of proof masses and double-ended tuning fork(DETF) oscillators. Under the external acceleration along the input axis, the proof mass applies forces to the oscillators, which causes a change in their resonant frequency. This frequency change is measured to indicate the applied acceleration. Pivot anchor and leverage mechanisms are adopted in the accelerometer to generate larger force from a proof mass under certain acceleration, which enables increasing its scale factor. Finite element method analyses have been conducted to design the accelerometer and a silicon on insulator(SOI) wafer with a substrate glass wafer was used for fabricating it. The fabricated accelerometer has a scale factor of 188 Hz/g, which is shown to be in agreement with analysis results.

Stochastic Analysis of Self-sustained Oscillation Loop for a Resonant Accelerometer

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.574-578
    • /
    • 2004
  • In this paper, a nonlinear feedback system is analyzed for a surface micromachined resonant accelerometer. For this, a brief illustration of the plant dynamics is given. In the analysis, the periodic signal in the nonlinear feedback loop is obtained by the limit cycle point, which is best approximated via the describing function method. Considering the characteristic feature of plant dynamics, a simple phase shifted relay with finite slope is designed for the nonlinearity implementation. With a describing function for random plus sinusoidal input, we analyzed the effect of a white Gaussian noise on oscillation frequency. Finally, simulation and experimental result is given.

  • PDF

A Polysilicon Capacitive Microaccelerometer with Unevenly Distributed Comb Electrodes (비등간격 수평감지 전극구조의 정전용량형 다결정 실리콘 가속도계)

  • Han, Ki-Ho;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.346-350
    • /
    • 2001
  • We present a surface-micromachined polysilicon capacitive accelerometer using unevenly distributed comb electrodes. The unique features of the accelerometer include a perforated proof-mass and the inner and outer comb electrodes with uneven electrode gaps. The perforated proof-mass reduces stiction between the structure and the substrate and the unevenly distributed electrodes shorten the electrode length required for a given sensitivity. The polysilicon accelerometer has been fabricated by the conventional 6-mask surface-micromachining process and showes a sensitivity of 1.03mV/g with a hybrid detection circuitry.

  • PDF

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

A Slope Inclinometer based on MEMS Accelerometers (MEMS 가속도센서를 이용한 경사도 측정장치)

  • Song, Ci-Moo
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.40-43
    • /
    • 2010
  • This paper deals with a new two dimensional clinometer based on dual axis micromachined accelerometers. The clinometer is a small and low-cost product, which is mainly developed to help golfers read easily the tilt of a putting green. First, this paper proposes the principle of two dimensional clinometer and also a calibration method with respect to the offset voltage and sensitivity of a accelerometer. Experimental results on the developed clinometer show that the proposed clinometer can provide useful information on the tilt angle and direction of an inclined plane.

  • PDF