• Title/Summary/Keyword: microfluidic

Search Result 428, Processing Time 0.03 seconds

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination (응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작)

  • Choi, Sung-Hwan;Kim, Dong-Sung;Kwon, Tai-Hun
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.

Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode (은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승)

  • Noh, Young Moo;Jin, Si Hyung;Jeong, Seong-Geun;Kim, Nam Young;Rho, Changhyun;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.472-477
    • /
    • 2015
  • This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.

Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion (불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작)

  • Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.639-643
    • /
    • 2021
  • In this study, fluorinated ethylene propylene (FEP) nanoparticle as an adhesive for fabricating a three-dimensional multilayered microfluidic device was studied. The formation of evenly distributed FEP nanoparticles layer with 3 ㎛ in thickness on substrates was achieved by simple spin coating of FEP dispersion solution at 1500 rpm for 30 s. It is confirmed that FEP nanoparticles transformed into a hydrophobic thin film after thermal treatment at 300 ℃ for 1 hour, and fabricated polyimide film-based microfluidic device using FEP nanoparticle was endured pressure up to 2250 psi. Finally, a three-dimensional multilayered microfluidic device composed of 16 microreactors, which are difficult to fabricate with conventional photolithography, was successfully realized by simple one-step alignment of FEP coated nine polyimide films. The developed three-dimensional multilayered microfluidic device has the potential to be a powerful tool such as high-throughput screening, mass production, parallelization, and large-scale microfluidic integration for various applications in chemistry and biology.