Acknowledgement
The authors would like to thank EditSprings (https://www.editsprings.cn) for providing English proofreading.
References
- Y. Shao, W. Gu, Y. Qiu, S. Wang, Y. Peng, Y. M. Zhu, and S. Zhuang, "Lipids monitoring in Scenedesmus obliquus based on terahertz technology," Biotechnol. Biofuels 13, 161 (2020).
- O. P. Cherkasova, D. S. Serdyukov, A. S. Ratushnyak, E. F. Nemova, E. N. Kozlov, Y. V. Shidlovskii, K. I. Zaytsev, and V. V. Tuchin, "Effects of terahertz radiation on living cells: A review," Opt. Spectrosc. 128, 855-866 (2020). https://doi.org/10.1134/S0030400X20060041
- W. Wang, G. H. Qiu, S. B. Pan, R. R. Zhang, J. L. Han, Y. K. Wang, Y. Guo, and M.-X. Yu, "Terahertz absorption and molecular vibration characteristics of PA66 polymer material," Spectrosc. Spectr. Anal. 40, 2702-2706 (2020).
- Y. Kawano, "Terahertz waves: A tool for condensed matter, the life sciences and astronomy," Contemp. Phys. 54, 143-165 (2013). https://doi.org/10.1080/00107514.2013.817194
- P. Tewari, N. Bajwa, R. S. Singh, M. O. Culjat, W. S. Grundgest, Z. D. Taylor, C. P. Kealey, D. B. Bennett, K. S. Barnett, and A. Stojadinovic, "In vivo terahertz imaging of rat skin burns," J. Biomed. Opt. 17, 040503 (2012).
- F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics 4, 611-622 (2010). https://doi.org/10.1038/nphoton.2010.186
- F. Mouhat, F. X. Coudert, and M. L. Bocquet, "Structure and chemistry of graphene oxide in liquid water from first principles," Nat. Commun. 11, 1566 (2020).
- X. Wang, W. Gui, F. Duan, and X. Mu, "Effect of functional groups on the adsorption of graphene oxide on iron oxide surface," Surf. Sci. 716, 121982 (2022).
- I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, "Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy," Nano Lett. 12, 551-555 (2012). https://doi.org/10.1021/nl202442b
- Y. Zhou, X. Xu, H. Fan, M. Qi, J. Li, J. Bai, and Z. Ren, "Graphene: Manipulate terahertz waves," in Graphene Optoelectronics: Synthesis, Characterization, Properties, and Applications, R. M. Yusoff, Ed. (Wiley, USA, 2014), Chapter 4.
- Y.-W. Wen, B. Su, J. Wang, G. Wang, Y. Wu, J. He, and C. Zhang, "Terahertz spectral analysis of different electrolytes," Opt. Eng. 59, 055107 (2020).
- F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, "Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array," Appl. Phys. Lett. 102, 12113 (2013).
- P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, "Microfluidic devices for terahertz spectroscopy of biomolecules," Opt. Express 16, 1577-1582 (2008). https://doi.org/10.1364/OE.16.001577
- S. J. Oh, S. Haam, and J.-S. Suh, "Terahertz characteristics of water and liquids," in Terahertz Biomedical Science and Technology, 1st ed. (CRC Press, 2014), Chapter 3.
- P. F. Taday, "Applications of terahertz spectroscopy to pharmaceutical sciences," Philos. Trans. R. Soc. A 362, 351-364 (2004). https://doi.org/10.1098/rsta.2003.1321
- W. Xu, F. M. Peeters, and T. C. Lu, "Dependence of resistivity on electron density and temperature in graphene," Phys. Rev. B 79, 073403 (2009).
- H. Mei, W. Xu, C. Wang, H. Yuan, C. Zhang, L. Ding, J. Zhang, C. Deng, Y. Wang and F. M. Peeters, "Terahertz magneto-optical properties of bi- and tri-layer graphene," J. Phys. Condens. Matter 30, 175701 (2018).
- N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, "Cluster scattering effects on phonon conduction in graphene," Phys. Rev. B 81, 045408 (2010).
- K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, "Graphene/ polyaniline nanofiber composites as supercapacitor electrodes," Chem. Mater. 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u