DOI QR코드

DOI QR Code

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Siyu Qian (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Bo Peng (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Bo Su (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Zhuang Peng (Department of Physics, Capital Normal University) ;
  • Hailin Cui (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Shengbo Zhang (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Cunlin Zhang (Key Laboratory of Terahertz Optoelectronics, Ministry of Education)
  • Received : 2023.04.19
  • Accepted : 2023.06.22
  • Published : 2023.08.25

Abstract

Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

Keywords

Acknowledgement

The authors would like to thank EditSprings (https://www.editsprings.cn) for providing English proofreading.

References

  1. Y. Shao, W. Gu, Y. Qiu, S. Wang, Y. Peng, Y. M. Zhu, and S. Zhuang, "Lipids monitoring in Scenedesmus obliquus based on terahertz technology," Biotechnol. Biofuels 13, 161 (2020).
  2. O. P. Cherkasova, D. S. Serdyukov, A. S. Ratushnyak, E. F. Nemova, E. N. Kozlov, Y. V. Shidlovskii, K. I. Zaytsev, and V. V. Tuchin, "Effects of terahertz radiation on living cells: A review," Opt. Spectrosc. 128, 855-866 (2020). https://doi.org/10.1134/S0030400X20060041
  3. W. Wang, G. H. Qiu, S. B. Pan, R. R. Zhang, J. L. Han, Y. K. Wang, Y. Guo, and M.-X. Yu, "Terahertz absorption and molecular vibration characteristics of PA66 polymer material," Spectrosc. Spectr. Anal. 40, 2702-2706 (2020).
  4. Y. Kawano, "Terahertz waves: A tool for condensed matter, the life sciences and astronomy," Contemp. Phys. 54, 143-165 (2013). https://doi.org/10.1080/00107514.2013.817194
  5. P. Tewari, N. Bajwa, R. S. Singh, M. O. Culjat, W. S. Grundgest, Z. D. Taylor, C. P. Kealey, D. B. Bennett, K. S. Barnett, and A. Stojadinovic, "In vivo terahertz imaging of rat skin burns," J. Biomed. Opt. 17, 040503 (2012).
  6. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics 4, 611-622 (2010). https://doi.org/10.1038/nphoton.2010.186
  7. F. Mouhat, F. X. Coudert, and M. L. Bocquet, "Structure and chemistry of graphene oxide in liquid water from first principles," Nat. Commun. 11, 1566 (2020).
  8. X. Wang, W. Gui, F. Duan, and X. Mu, "Effect of functional groups on the adsorption of graphene oxide on iron oxide surface," Surf. Sci. 716, 121982 (2022).
  9. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, "Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy," Nano Lett. 12, 551-555 (2012). https://doi.org/10.1021/nl202442b
  10. Y. Zhou, X. Xu, H. Fan, M. Qi, J. Li, J. Bai, and Z. Ren, "Graphene: Manipulate terahertz waves," in Graphene Optoelectronics: Synthesis, Characterization, Properties, and Applications, R. M. Yusoff, Ed. (Wiley, USA, 2014), Chapter 4.
  11. Y.-W. Wen, B. Su, J. Wang, G. Wang, Y. Wu, J. He, and C. Zhang, "Terahertz spectral analysis of different electrolytes," Opt. Eng. 59, 055107 (2020).
  12. F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, "Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array," Appl. Phys. Lett. 102, 12113 (2013).
  13. P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, "Microfluidic devices for terahertz spectroscopy of biomolecules," Opt. Express 16, 1577-1582 (2008). https://doi.org/10.1364/OE.16.001577
  14. S. J. Oh, S. Haam, and J.-S. Suh, "Terahertz characteristics of water and liquids," in Terahertz Biomedical Science and Technology, 1st ed. (CRC Press, 2014), Chapter 3.
  15. P. F. Taday, "Applications of terahertz spectroscopy to pharmaceutical sciences," Philos. Trans. R. Soc. A 362, 351-364 (2004). https://doi.org/10.1098/rsta.2003.1321
  16. W. Xu, F. M. Peeters, and T. C. Lu, "Dependence of resistivity on electron density and temperature in graphene," Phys. Rev. B 79, 073403 (2009).
  17. H. Mei, W. Xu, C. Wang, H. Yuan, C. Zhang, L. Ding, J. Zhang, C. Deng, Y. Wang and F. M. Peeters, "Terahertz magneto-optical properties of bi- and tri-layer graphene," J. Phys. Condens. Matter 30, 175701 (2018).
  18. N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, "Cluster scattering effects on phonon conduction in graphene," Phys. Rev. B 81, 045408 (2010).
  19. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, "Graphene/ polyaniline nanofiber composites as supercapacitor electrodes," Chem. Mater. 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u