DOI QR코드

DOI QR Code

Quantitative Measurement of Ethane Using Mid-infrared Cavity Ring-down Spectroscopy

  • Yonghee Kim (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Byung Jae Chun (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Lim Lee (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Kwang-Hoon Ko (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Seung-Kyu Park (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Taek-Soo Kim (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Hyunmin Park (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
  • Received : 2023.04.26
  • Accepted : 2023.06.07
  • Published : 2023.08.25

Abstract

Quantitative measurement of trace ethane is important in environmental science and biomedical applications. For these applications, we typically require a few tens of part-per-trillion level measurement sensitivity. To measure trace-level ethane, we constructed a cavity ring-down spectroscopy setup in the 3.37 ㎛ mid-infrared wavelength range, which is applicable to multi-species chemical analysis. We demonstrated that the detection limit of ethane is approximately 300 parts per trillion, and the measured concentration is in agreement with the amounts of the injected sample. We expect that these results can be applied to the chemical analysis of ethane and applications such as breath test equipment.

Keywords

Acknowledgement

This work was supported by the KAERI Institutional Program (Project No. 524430-23).

References

  1. I. J. Simpson, M. P. S. Andersen, S. Meinardi, L. Bruhwiler, N. J. Blake, D. Helmig, F. S. Rowland, and D. R. Blake, "Long-term decline of global atmospheric ethane concentrations and implications for methane," Nature 488, 490-494 (2012). https://doi.org/10.1038/nature11342
  2. B. Franco, M. Mahieu, L. K. Emmons, Z. A. Tzompa-Sosa, E. V. Fischer, K. Sudo, B. Bovy, S. Conway, D. Griffin, J. W. Hannigan, K. Strong, and K. A. Walker, "Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America," Environ. Res. Lett. 11, 044010 (2016).
  3. M. Friedrich, E. Beutner, H. Reuvers, S. Smeekes, J. Urbain, W. Bader, B. Franco, B. Lejeune, and E. Mahieu, "A statistical analysis of time trends in atmospheric ethane," Clim. Change 162, 105-125 (2020). https://doi.org/10.1007/s10584-020-02806-2
  4. E. V. Fischer, D. J. Jacob, R. M. Yantosca, M. P. Sulprizio, D. B. Millet, J. Mao, F. Paulot, H. B. Singh, A. Roiger, L. Ries, R. W. Talbot, K. Dzepina, and S. P. Deolal, "Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution," Atoms. Chem. Phys. 14, 2679-2698 (2014). https://doi.org/10.5194/acp-14-2679-2014
  5. K. D. Skeldon, C. Patterson, C. A. Wyse, G. M. Gibson, M. J. Padgett, C. Longbottom, and L. C. McMillan, "The potential offered by real-time, high sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy," J. Opt. A: Pure Appl. Opt. 7, S376-S384 (2005). https://doi.org/10.1088/1464-4258/7/6/019
  6. K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, "Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer," Respir. Med. 100, 300-306 (2006). https://doi.org/10.1016/j.rmed.2005.05.006
  7. R. Larracy, A. Phinyomark, and E. Scheme, "Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath," J. Breath Res. 16, 026008 (2022).
  8. P. Paredi, S. A. Kharitonov, D. Leak, S. Ward, D. Cramer, and P. J. Barnes, "Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease," Am. J. Respir. Crit. Care Med. 162, 369-373 (2000). https://doi.org/10.1164/ajrccm.162.2.9909025
  9. M. Baeker, M. Hengst, J. Schmid, H.-J. Buers, B. Mittermaier, D. Klemp, and R. Koppmann, "Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis," Eur. Respir. J. 27, 929-936 (2006). https://doi.org/10.1183/09031936.06.00085105
  10. P. Paredi, S. A. Kharitonov, and P. J. Barnes, "Elevation of exhaled ethane concentration in asthma," Am. J. Respir. Crit. Care Med. 162, 1450-1454 (2000). https://doi.org/10.1164/ajrccm.162.4.2003064
  11. M. Refat, T. J. Moore, M. Kazui, T. H. Risby, J. A. Perman, and K. B. Schwarz, "Utility of breath ethane as a noninvasive biomarker of vitamin E status in children," Pediatr. Res. 30, 396-403 (1991). https://doi.org/10.1203/00006450-199111000-00002
  12. C. Patterson, L. C. McMillan, K. Stevenson, K. Radhakrishnan, P. G. Shiels, M. J. Padgett, and K. D. Skeldon, "Dynamic study of oxidation stress in renal dialysis patients based on breath ethane measured by optical spectroscopy," J. Breath Res. 1, 026005 (2007).
  13. A. D. Wilson, "Advances in electronic-nose technologies for detection of volatile biomarker metabolites in the human breath," Metabolites 5, 140-163 (2015). https://doi.org/10.3390/metabo5010140
  14. T. H. Risby and S. F. Solga, "Current status of clinical breath analysis," Appl. Phys. B 85, 421-426 (2006). https://doi.org/10.1007/s00340-006-2280-4
  15. Y. Y. Broza, R. Vishinkin, O. Barash, M. K. Nakhleh, and H. Haick, "Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation," Chem. Soc. Rev. 47, 4781-4859 (2018). https://doi.org/10.1039/C8CS00317C
  16. B. Henderson, A. Khodabakhsh, M. Metsala, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. L. Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, "Laser spectroscopy for breath analysis: towards clinical implementation," Appl. Phys. B 124, 161 (2018).
  17. G. D. Banik and B. Mizaikoff, "Exhaled breath analysis using cavity enhanced optical techniques: A review," J. Breath Res. 14, 043001 (2020).
  18. D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, "Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy," Opt. Express 19, 24078-24089 (2011). https://doi.org/10.1364/OE.19.024078
  19. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, "Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements," Appl. Opt. 48, B73-B79 (2009). https://doi.org/10.1364/AO.48.000B73
  20. G. Basum, H. Dahnke, D. Halmer, P. Hering, and M. Murtz, "Online recording of ethane trace in human breath via infrared laser spectroscopy," J. Appl. Physiol. 95, 2583-2590 (2003). https://doi.org/10.1152/japplphysiol.00542.2003
  21. D. Halmer, S. Thelen, P. Hering, and M. Murtz, "Online monitoring of ethane traces in exhaled breath with difference frequency generation spectrometer," Appl. Phys. B 85, 437-443 (2006). https://doi.org/10.1007/s00340-006-2288-9
  22. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser source," Rev. Sci. Instrum. 59, 2544-2551 (1988). https://doi.org/10.1063/1.1139895
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, USA, 2007).
  24. HITRAN on the Web, "Molecules: Launch simulation/Simulation results," (HITRAN on the Web), http://hitran.iao.ru (Accessed Date: Apr. 10, 2023).
  25. R. Dodangodage, P. F. Bernath, J. Zhao, and B. Billinghurst, "Absorption cross sections for ethane broadened by hydrogen and helium in the 3.3 micron region," J. Quant. Spectrosc. Radiat. Transf. 253, 107131 (2020).
  26. J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, "Two schemes for trace detection using cavoty ringdown spectroscopy," Appl. Phys. B 78, 465-476 (2004).
  27. R. D. van Zee, J. T. Hodgers, and J. P. Looney, "Pulsed, single-mode cavity ringdown spectroscopy," Appl. Opt. 38, 3951-3960 (1999). https://doi.org/10.1364/AO.38.003951