• Title/Summary/Keyword: microcontroller system

Search Result 318, Processing Time 0.546 seconds

Development of the Dual Mode Syringe Type Infusion Pump (이중모드 주사기형 약물자동주입장치의 개발에 관한 연구)

  • Hong, S.Y.;Um, K.H.;Kim, I.K.;Lee, K.J.;Yoon, H.R.;Kim, U.K.;Um, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.317-318
    • /
    • 1998
  • The purpose of this study is to design and develop the circuit of the dual mode syringe pump. Syringe pump is used in intensive care unit, delivery room, pediatric room, operating theater and other fields of hospital at present. Normally the syringe pump delivers one medicine in one case, but in case of intensive care unit, it is necessary to deliver more than two kinds of medicines at a time. Therefore we have designed dual mode syringe pump. We used RISC type microcontroller, PIC17C44 as master controller, and PIC16C73 as slave cpu using for the low power consumption. The performance of system is evaluated by analysis of the linearity and accuracy which is the most important factors in application. While the proposed system shows a acceptable linearity and accuracy, a further research about reducing the errorr should be done.

  • PDF

Arm Cortex S3C2440 Microcontroller Application for Transcranial Magnetic Stimulation's Pulse Forming on Bax Reactive Cells and Cell Death in Ischemia Induced Rats

  • Tac, Han-Ho;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.266-272
    • /
    • 2016
  • Transcranial magnetic stimulation devices has been used mainly for diagnostic purposes by measuring the functions of the nervous system rather than for treatment purposes, and has a problem of considerable energy fluctuations per repeated pulse. The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. Control is difficult and the size is large due to the difficulty of digitalizing the energy stored in a capacitor, and there are many heavy devices. In addition, there are many constraints when it is used for a range of purposes such as head and neck diagnosis, treatment and rehabilitation of nerve palsy, muscle strengthening, treatment of urinary incontinence etc. Output stabilization and minimization of the energy variation rate are required as the level of the transcranial magnetic stimulation device is dramatically improved and the demand for therapeutic purposes increases. This study developed a compact, low cost transcranial magnetic stimulation device with minimal energy variation of a high repeated pulse and output stabilization using a real time capacitor charge discharge voltage. Ischemia was induced in male SD rats by closing off the common carotid artery for 5 minutes, after which the blood was re-perfused. In the cerebrum, the number of PARP reactive cells after 24 hours significantly decreased (p < 0.05) in the TMS group compared to the GI group. As a result, TMS showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells.

Low-Power Metamorphic MCU using Partial Firmware Update Method for Irregular Target Systems Control (불규칙한 대상 시스템 제어를 위하여 부분 펌웨어 업데이트 기법을 이용한 저전력 변성적 MCU)

  • Baek, Jongheon;Jung, Jiwoong;Kim, Minsung;Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.301-307
    • /
    • 2021
  • In addition to the revival of the Internet of Things, embedded systems, which are at the core of the Internet of Things, require intelligent control as things change. Embedded systems, however, are heavily constrained by resources such as hardware, memory, time and power. When changes are needed to firmware in an embedded system, flash Memory must be initialized and the entire firmware must be uploaded again. Therefore, it is time- and energy-efficient in that areas that do not need to be modified must also be initialized and rewritten. In this paper, we propose how to upload firmware in installments to each sector of flash memory so that only firmware can be replace the firmware in the parts that need to be modified when the firmware needs to be modified. In this paper, the proposed method was evaluated using real target board, and as a result, the time was reduced by about half.

Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus (관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용)

  • Jung, Ji-Yong;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.38-46
    • /
    • 2011
  • 3D motion analysis system which is currently widely used for walking analysis has limitations due to both necessity of wide space for many cameras for measurement, high cost, and complicated preparation procedure, which results in low accessability in use and application for clinical diagnosis. To resolve this problem, we developed 3-dimensional wireless ambulatory measurement system based on inertial sensor which can be easily applicable for clinical diagnosis for lower extremity deformity and developed system was evaluated by applying for 10 elderly people with diabetes mellitus. Developed system was composed of wireless ambulatory measurement module that consists of inertial measurement unit (IMU) which measures the gait characteristics, microcontroller which collects and precesses the inertial data, bluetooth device which transfers the measured data to PC and Window's application for storing and processing and analyzing received data. This system will utilize not only to measure lower extremity (foot) problem conveniently in clinical medicine but also to analyze 3D motion of human in other areas as sports science, rehabilitation.

Development of Liquid Crystal Optic Modulation Based X-ray Dosimeter by Using CdS Sensor (CdS 센서를 이용한 액정 광변조 X-선 검출 시스템 개발)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Kim, Hyun-Hee;Cho, Chang-Hoon;Park, Jun-Hong;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.357-361
    • /
    • 2011
  • In this study, the liquid-crystal optical modulation X-ray detection system using a CdS which is a family of II-IV compound semiconductor was proposed. The system consist of the detector, the signal processing part, the liquid-crystal driving parts, microcontroller, and I/O parts, and was designed to be suitable for miniaturization and portable. In addition, the system can measure a wide range X-ray by using the detecting range selection. In order to evaluate the performance of the proposed system, the CdS sensor's output characteristics were confirmed in accordance with changes of dose, and excellent correlation was determined. And also, the optical penetration ratio was discussed in accordance with changes of the applied voltage by measuring the change of the liquid-crystal in accordance with changes of the applied voltage. Through these results, the characteristics of the liquid-crystal optical modulation system such as the excellent reproducibility and the noise immunity were confirmed. And we considered that the CdS cell-based liquid-crystal optical modulated portable X-ray detection system could be applied to compact, low-cost, portable system.

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

Automatic measurement of voluntary reaction time after audio-visual stimulation and generation of synchronization signals for the analysis of evoked EEG (시청각자극 후의 피험자의 자의적 반응시간의 자동계측과 유발뇌파분석을 위한 동기신호의 생성)

  • 김철승;엄광문;손진훈
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • Recently, there have been many attempts to develop BCI (brain computer interface) based on EEG (electroencephalogram). Measurement and analysis of EEG evoked by particular stimulation is important for the design of brain wave pattern and interface of BCI. The purpose of this study is to develop a general-purpose system that measures subject's reaction time after audio-visual stimulation which can work together with any other biosignal measurement systems. The entire system is divided into four modules, which are stimulation signal generation, reaction time measurement, evoked potential measurement and synchronization. Stimulation signal generation module was implemented by means of Flash. Measurement of the reaction time (the period between the answer request and the subject reaction) was achieved by self-made microcontroller system. EEG measurement was performed using the ready-made hardware and software without any modification. Synchronization of all modules was achieved by, first, the black-and-white signals on the stimulation screen synchronized with the problem presentation and the answer request, second, the photodetectors sensing the signals. The proposed method offers easy design of purpose-specific system only by adding simple modules (reaction time measurement, synchronization) to the ready-made stimulation and EEG system, and therefore, it is expected to accelerate the researches requiring the measurement of evoked response and reaction time.

  • PDF

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.

Operation of Brushless DC Motor without a Rotor Magnet Position Sensor (회전자극 위치센서 없는 Brushless DC전동기의 운전에 관한 연구)

  • 서석훈;엄우용
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.50-55
    • /
    • 1999
  • Brushless DC Motor(BLDCM) has high efficiency. But this type of motor needs a rotor sensor which complicates the motor configuration. Rotor position sensor degrades system reliability in the severe environmental condition. In this paper, we study a controller which permits the determination of the rotor position by the back EMF to eliminate the rotor position sensor Also, since the back EMF is zero at standstill, a starting technique which permits the starting of an asynchronous motor without a sensor is described. The controller is implemented using microcontroller for minimal external component.

  • PDF

Development of Air-cell Mattress for Preventing Pressure Ulcer Using Anthropometric Model (인체계측 모델을 이용한 욕창방지용 공기셀 매트리스의 개발)

  • Kang Sung-Jae;Kim Gyu-Seok;Hong Jung-Hwa;Ryu Je-Cheong;Kim Kyung-Hoon;Mun Mu-Seong;Moon Inhyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.578-586
    • /
    • 2005
  • Air mattress is now used widely to prevent the pressure ulcer by reducing the localized pressure peaks. The pressure control method based on the anthrophometric model of an air-cell mattress developed in this study is presented. The air-cell mattress has 18 cylindrical air cells made of porous material allowing air leakage. Even though the air leakage can contribute to reducing the development of pressure ulcer by lowering the pressure peak, temperature and humidity, the air pressure changes with time and the desired air-cell pressure has to be determined as an optimal value for each user. To select the desired air-cell pressure, we first divide the parts of the body into four sections such as head, trunk, hip, and leg. Then, the pressure of each section grouped with air-cells is calculated from the weight of each part estimated from the individual height and body weight. Air supply system for the air-cell mattress is implemented by using four electronic solenoid valves and an air compressor, and it is driven by a real-time microcontroller. We experimented with five subjects of the contact pressure on skin. The experimental results show that the proposed air-cell mattress is effective for the prevention of the pressure ulcer.