• Title/Summary/Keyword: microbial transformation

Search Result 86, Processing Time 0.019 seconds

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Standardization and Development of Pharmacopoeial Standard Operating Procedures (SOPs) of Classical Unani Formulation

  • Mannan, Mohd Nazir;Kazmi, Munawwar Husain;Zakir, Mohammad;Naikodi, Mohammed Abdul Rasheed;Zahid, Uzma;Siddiqui, Javed Inam
    • CELLMED
    • /
    • v.10 no.2
    • /
    • pp.16.1-16.8
    • /
    • 2020
  • Standardization of drug deals with confirmation of drug identity and determination of drug quality and purity. Unani herbal formulations are used in traditional medicine for the treatment of various diseases. Cancer is a disease which causes abnormal, uncontrolled growth of body tissue or cells, which tend to proliferate in an uncontrolled way. Spread of cancer from site of origin to other organs of the body is called metastasis. It is a hyper proliferative disorder involving, transformation, dysregulation of apoptosis, invasion and angiogenesis. The present study aimed to standardize a classical Unani formulation (CUF) described as anticancer properties. The CUF has been used for anti-cancerous activity (Dāfi'-i-saraṭān) in human population by Unani physicians for centuries. The standardization parameters carried out for classical Unani formulation are pharmacognostical studies, physicochemical parameters, high-performance thin layer chromatography (HPTLC), microbial load, aflatoxins, and heavy metals revealing specific identities and to evaluate Pharmacopoeial standards. Experiment and the data obtained established the Pharmacopoeial standards for this formulation for identification and quality control purpose. The CUF has been successfully standardized and standard operating procedures (SOPs) for its preparation has been laid down which may serve as a standard reference in future. The standardization data of this formulation may be used as a standard guideline for preparation of the formulation in future.

A Review on Nitrate Source Identification using Isotope Analysis (동위원소분석을 이용한 질산염의 오염원 추적에 대한 고찰)

  • Jeen, Sung-Wook;Lee, Hwan;Kim, Rak-Hyeon;Jeong, Hoon Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Nitrate ($NO_3^-$), a common surface water and groundwater pollutant, poses a serious environmental problem in regions with intensive agricultural activities and dense population. It is thus important to identify the source of nitrate contamination to better manage water quality. Due to the distinct isotope compositions of nitrate among different origins, the dual isotope analysis (${\delta}^{15}N$ and ${\delta}^{18}O$) of nitrate has been widely applied to track contamination sources. This paper provided the underlying backgrounds in the isotope analysis of nitrate, which included typical ranges of ${\delta}^{15}N$ and ${\delta}^{18}O$ from various nitrate sources, isotope fractionation, the analytical methods used to concentrate nitrate from samples, and the potential limitations of the dual isotope analysis along with the resolutions. To enhance the applicability of the dual isotope analysis as well as increase the ability to interpret field data, this paper also introduced several case studies. Furthermore, other environmental tracers including ${\delta}^{11}B$ and $Cl^-/Br^-$ ratios were discussed to accompany the dual isotope analysis for better assignment of contamination sources even when microbial transformation of nitrate and/or mixing between contaminant plumes occur.

Inhibitory Effects of Fermented Gastrodia elata on High Glucose-induced NO and IL-8 Production in Human Umbilical Vein Endothelial Cells

  • Kwon, Se-Uk;Jeon, Sung-Bong;Xin, Mingje;Kim, Jun-Ho;Im, Ji-Young;Cha, Ji-Yun;Jee, Ho-Kyun;Lee, Oh-Gu;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.266-272
    • /
    • 2012
  • Hyperglycemia or high glucose (HG), is the hallmark of diabetes, known to induce oxidative stress, release of chemokines, and cytokines, which confer endothelial cell damage. On the other hand, microbial transformation of organic materials often leads to certain changes in their product structures which could enhance their biological activities. The aim of this study was to investigate the beneficial effects of fermented Gastrodia elata (FGE) in HG induced human umbilical vein endothelial cells (HUVECs) dysfunction. GE, fermented by Saccharomyces cerevisiae, which has an extensive history of safe use, exhibited higher phenolic compounds content than those of Gastrodia elata (GE). The HG-induced production of nitric oxide (NO) and interleukin-8 (IL-8) were significantly attenuated by FGE pretreatment to the cells, in a concentration dependent manner. In addition, FGE showed marked activity in free radical scavenging. These results suggest that FGE possesses beneficial effects in protecting against the oxidative stress, and inflammatory conditions in endothelial cells, caused by HG.

Differences of Soil Enzyme Activity after Incorporation with Chinese Milk Vetch Litter Cut at Different Growth Stages

  • Lee, Ji-Hyun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.341-347
    • /
    • 2007
  • Chinese milk vetch (CMV) is a winter legume that is commonly used as cover crop in Korea. Kill date of cover crop for addition into soil affects N content in cover crop and N availability in soil. This study was conducted to evaluate the effect of CMV as green manure cover crop according to kill dates before growing corn without artificial fertilizer. Top of CMV cut three times on 13 April, 27 April, and 11 May were added into soil at a rate of 600 kg per 10a. Sugar content in CMV litter was persistently decreased from mid-April to late-May. The decrease of sugar content might be due to the transformation into starch and/or other storage or structural constituents. The decreased amount of sugars was greater than 12% and the increased amount of starch was less than 0.2%. Concentration of $NH_4^+$ in soil treated by CMV litter cut on May 11 was slightly higher than that in the treatment with early-cut (April 13) CMV, the concentration at 28 and 49 DAT (days after treatment) was higher in the treatment with late-cut CMV litter. Regardless of cut (kill) date of CMV, the phosphatase activity in the treatment of CMV litter was higher compared to the untreated control. Soil dehydrogenase activity was increased steadily by addition of CMV litter implying total microbial activities in the soil were increased. Our results demonstrate that the status of cover crop species at kill date is an important factor influencing soil enzyme activities derived from microorganisms. Therefore, the optimal kill date of cover crop should be examined to improve the efficiency of cover crop as green manure crop regarding the practical sequence in cropping system.

Seasonal Fluctuations of Heterotrophic Activity and Bacterial Extracellular Enzyme Activity in Paldang Lake (팔당호에서 종속영양 활성도의 계절적 변화 및 세균의 세포외 효소활성)

  • 김상진
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.93-98
    • /
    • 1993
  • To investigate the organic matter transformation in aquatic environment, seasonal fluctuations of heterotrophic activity and microbia] extracellular enzyme activity were studied in Paldang Lake, Korea. The turnover time in the water column and the sediment at the station I fluctuated between 3 -I ,300 hrs and 17-170 hrs for glucose, 5 -1.900 hrs and 15-240 hrs for protein hydrolysate and 4-350 hrs and 15-230 hrs for acetic acid, respectively, indicating that the seasonal turnover time of organic substrates fluctuated drastically. The respiration ratios of glucose. protein hydrolysate and acetate were 23-32%, 38-41% and 22-28% in the water column and 34%, 61% and 41% in the sediment. respectively. These results showed that the respiration ratios in the sediment were higher than those in the water column regardless of kinds of organic substrates. The bacterial extracellular enzyme activities of $\alpha$-glucosidase. $\beta$-glucosidase, N-acetyl-$\beta$-D-glucosaminidase and aminopeptidase were 32-44%. 31-32%, 18-34% and 61-67% in the water column, and 34%. 40%, 23% and 65% in the sediment. respectively.

  • PDF

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus

  • Jothibasu, K.;Chinnadurai, C.;Sundaram, S.P.;Kumar, K.;Balachandar, D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.301-310
    • /
    • 2012
  • Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

Lignin Removal from Barley Straw by Ethanosolv Pretreatment (Ethanosolv 전처리에 의한 보릿짚의 리그닌 제거)

  • Kim, Young-Ran;Yu, An-Na;Chung, Bong-Woo;Han, Min-Hee;Choi, Gi-Wook
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio-based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents. As a result, effective pretreatment strategies are necessary. The vast majority of pretreatment strategies have focused on achieving a reduction of lignin content. In this work, an ethanosolv pretreatment has been evaluated for extracting lignin from barley straw. 75% ethanol was used as a pretreatment solvent to extract lignin from barley straw. The influence on delignification of three independent variables are temperature, time, catalyst (1 M $H_2SO_4$) dose. The best pretreatment condition observed was $180^{\circ}C$, 120 min, 0.2% $H_2SO_4$ and delignification was 38%. A combined roasting and ethanosolv, 2-step pretreatment, was developed in order to improve the delignification. Roasting didn't increase the delignification but reduced the pretreatment time. X-ray diffraction results indicated that these physical changes enhance the enzymatic digestibility in the ethanosolv treated barley straw. The cellulose in the pretreated barley straw becomes more crystalline without undergoing ethanosolv.

Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger (Polychlorinated Biphenyl의 토양 미생물 Aspergillus niger에 의한 생분해 경로)

  • Kim, Chang-Su;Lim, Do-Hyung;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As of many organochlorine pesticides, polychlorinated biphenyls are ubiquitous organic contaminants, which can be found in the most environmental matrices. Their toxic effects include endocrinedisrupting activity. Most researches with these toxicants performed with mixtures of congeners, namely Aroclor and related study has been done in complex environmental matrix, rather than single biosystems or pure congeners. 5 congeners were synthesized and their fates in pure microbial culture (Aspergillus niger) were determined in this study. Among biphenyl and synthetic congeners, biphenyl, PCB-1 (2-chlorobiphenyl), and PCB-3 (4-chlorobiphenyl) were rapidly transformed to hydrophilic metabolites, followed by PCB-38 (3,4,5-trichlorobiphenyl), while the degradation of PCB-126 (3,3',4,4',5-pentachlorobiphenyl) was not observed. The amounts of transformation for biphenyl, PCB-1, PCB-3, and PCB-38 were 65, 38, 52, and 2% respectively. The major metabolites of the above congeners were identified as mono- and di-hydroxy biphenyls, which are known to give adverse endocrinological effects.

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.