References
- Bagwell, C. E. and C. R. Lovell. 2000. Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microbial Ecol. 39: 128-136. https://doi.org/10.1007/s002480000017
- Bagwell, C. E., Y. M. Piceno, A. Ashburne-Lucas, and C. R. Lovell. 1998. Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses Appl. Environ. Microbiol. 64: 4276-4282.
- Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32. https://doi.org/10.1016/j.tplants.2003.11.008
- Bashour, I. I. and A. H. Sayegh. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agricultural Organization of United Nations, Rome.
- Bhojvaid, P. P., V. R. Timmer, and G. Singh. 1996. Reclaiming sodic soils for wheat production by Prosopis juliflora (Swartz) DC afforestation in India. Agroforestry Systems 34: 139-150. https://doi.org/10.1007/BF00148158
- Butler, J. L., M. A. Williams, P. J. Bottomley, and D. D. Myrold. 2003. Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 69: 6793-6800. https://doi.org/10.1128/AEM.69.11.6793-6800.2003
- Cardon, Z. G. and D. J. Gage. 2006. Resource exchange in the rhizosphere: Molecular tools and the microbial perspective. Annu. Rev. Ecol. Evol. Syst. 37: 459-488. https://doi.org/10.1146/annurev.ecolsys.37.091305.110207
- Chiron, R., H. Marchandin, F. Counil, E. J. Bilak, A. M. Freydiere, G. Bellon, et al. 2005. Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis. J. Clin. Microbiol. 43: 3938-3943. https://doi.org/10.1128/JCM.43.8.3938-3943.2005
- Chowdhury, S. P., M. Schmid, A. Hartmann, and A. K. Tripathi. 2009. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur. J. Soil Biol. 45: 114-122. https://doi.org/10.1016/j.ejsobi.2008.06.005
- Cibichakravarthy, B., R. Preetha, S. P. Sundaram, K. Kumar, and D. Balachandar. 2011. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus. World J. Microbiol. Biotechnol. DOI 10.1007/s11274-011-0853-9.
- Clarholm, M. 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants, pp. 255-265. In A. H. Fitter (ed.). Ecological Interactions in Soil. Special publication No. 4. British Ecological Society, Blackwell Oxford, UK.
- Cocolin, L., M. Manzano, M. Cantoni, and G. Comi. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67: 5113-5121. https://doi.org/10.1128/AEM.67.11.5113-5121.2001
- Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, et al. 2005. The Ribosomal Database Project (RDPII): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
- Daniel, R. 2004. The soil metagenome: A rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
- Embley, T. M. and E. Stackebrandt. 1996. The use of 16S ribosomal RNA sequences in microbial ecology, pp. 39-62. In R.W. Pickup, and J. R. Saunders (eds.). Molecular Approaches to Environmental Microbiology. Horwood, London.
- Felske, A. and A. D. L. Akkermans. 1998. Spatial homogeneity of the most abundant bacterial 16S rRNA molecules in grassland soils. Microbial Ecol. 36: 31-36. https://doi.org/10.1007/s002489900090
- Ferrero, M. A., E. Menoyo, M. A. Lugo, M. A. Negritto, M. E. Faríasa, A. M. Antone, and F. Sineriz. 2010. Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. J. Arid Environ. 74: 1177-1185. https://doi.org/10.1016/j.jaridenv.2010.04.008
- Garrity, G. M., J. A. Bell, and T. Lilburn. 2005. Family II. Oxalobacteraceae fam. nov., p. 623. In D. J. Brenner, N. R. Krieg, J. T. Staley, and G. M. Garrity (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed., Vol. 2, The Proteobacteria, Part C. Springer, New York.
- Glaeser, S. P., P. Kampfer, H. J. Busse, S. Langer, and J. Glaeser. 2009. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int. J. Syst. Evol. Microbiol. 59: 323-330. https://doi.org/10.1099/ijs.0.65852-0
- Gomes, N. C. M., O. Fagbola, R. Costa, N. G. Rumjanek, A. Buchner, L. Mendona-Hagler, and K. Smalla. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69: 3758-3766. https://doi.org/10.1128/AEM.69.7.3758-3766.2003
- Gomes, N. C. M., H. Heuer, J. Schonfeld, R. Costa, L. Mendonca-Hagler, and K. Smalla. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232: 167-180. https://doi.org/10.1023/A:1010350406708
- Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Molec. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
- Hao, D. C., G. B. Ge, and L. Yang. 2008. Bacterial diversity of Taxus rhizosphere: Culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212. https://doi.org/10.1111/j.1574-6968.2008.01201.x
- Hirsch, P. R., T. H. Mauchline, and I. M. Clark. 2010. Cultureindependent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42: 878-887. https://doi.org/10.1016/j.soilbio.2010.02.019
- Hugenholtz, P., B. P. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
- Kent, A. D. and E. W. Triplett. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56: 211-236. https://doi.org/10.1146/annurev.micro.56.012302.161120
- Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, G. Renella, and F. Valori. 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo (Argentina) 25: 89-97.
- Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, et al. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie Van Leeuwenhoek 90: 19-27. https://doi.org/10.1007/s10482-006-9056-z
- Lee, S. H., J. O. Ka, and J. C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285: 263-269. https://doi.org/10.1111/j.1574-6968.2008.01232.x
- Lynch, J. M. 1990. The Rhizosphere. Wiley Inter Science, Chichester, UK.
- Marschner, P., G. Neumann, A. Kania, L. Weiskopf, and R. Lieberei. 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246: 167-174. https://doi.org/10.1023/A:1020663909890
- Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327. https://doi.org/10.1016/S1369-5274(99)80056-3
- Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural communities. Curr. Opin. Microbiol. 2: 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
- Navarro-Noya, Y. E., J. Janet Jan-Roblero, M. C. Gonzalez-Chavez, R. Hernandez-Gama, and C. Cesar Hernandez-Rodriguez. 2010. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 97: 335-349. https://doi.org/10.1007/s10482-010-9413-9
- Nicol, G. W., L. A. Glover, and J. I. Prosser. 2003. Spatial analysis of archaeal community structure in grassland soil. Appl. Environ. Microbiol. 69: 7420-7429. https://doi.org/10.1128/AEM.69.12.7420-7429.2003
- O'Sullivan, L. A., K. E. Fuller, E. M. Thomas, C. M. Turley, J. C. Fry, and A. J. Weightman. 2004. Distribution and culturability of the uncultivated 'AGG58 cluster' of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol. Ecol. 47: 359-370. https://doi.org/10.1016/S0168-6496(03)00300-3
- Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 730-740.
- Pandey, D. K., L. M. S. Palni, and S. C. Joshi. 2003. Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 51: 191-201. https://doi.org/10.1614/0043-1745(2003)051[0191:GRAPOR]2.0.CO;2
- Penn, K., D. Wu, J. A. Eisen, and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680-1683. https://doi.org/10.1128/AEM.72.2.1680-1683.2006
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Sambrook, J. and D. W. Russel. 2000. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
- Singh, B. K., P. Millard, A. S. Whiteley, and J. C. Murrell. 2004. Unraveling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol. 12: 386-393. https://doi.org/10.1016/j.tim.2004.06.008
- Skinner, F. A., P. C. T. Jones, and J. E. Mollison. 1952. A comparison of direct- and a plate count technique for quantitative estimation of soil microorganisms. J. Gen. Microbiol. 6: 261-271. https://doi.org/10.1099/00221287-6-3-4-261
- Suzuki, T., M. S. Rappe, and S. J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64: 4522-4529.
- Tamura, K., J. Dudley, M. Nei, and K. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Towers, G. H. N., J. C. Mitchell, E. Rodriguez, F. D. Bennett, and P. V. Subbarao. 1977. Biology and chemistry of Parthenium hysterophorus L., a problem weed in India. J. Sci. Ind. Res. 36: 672-684.
- Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74. https://doi.org/10.1126/science.1093857
- Weaver, R. W., S. Angle, P. Bottomley, D. Bezdick, S. Smith, A. Tabatabai, and A. Wollum. 1994. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, Wisconsin, USA.
- Yoon, J. H., S. J. Kang, W. T. Im, S. T. Lee, and T. K. Oh. 2008. Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int. J. Syst. Evol. Microbiol. 58: 2224-2228. https://doi.org/10.1099/ijs.0.65291-0
- Zhang, H., Y. Sekiguch, S. Hanada, P. Hugenholtz, H. Kim, Y. Kamagata, and K. Nakamura. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphateaccumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53: 1155-1163 https://doi.org/10.1099/ijs.0.02520-0
- Zhou, J., B. Xia, D. S. Treves, L. Y. Wu, T. L. Marsh, R. V. O'Neill, et al. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326-334. https://doi.org/10.1128/AEM.68.1.326-334.2002
Cited by
- Effect of Rhizosphere on Sediment Microbial Numbers in Phytoremediation Process of Decabromodiphenyl Ether Contaminated Sediment vol.170, pp.None, 2018, https://doi.org/10.1088/1755-1315/170/3/032167
- Microbial Ecology of Qatar, the Arabian Gulf: Possible Roles of Microorganisms vol.8, pp.None, 2021, https://doi.org/10.3389/fmars.2021.697269
- Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review vol.13, pp.23, 2021, https://doi.org/10.3390/su132313081