• Title/Summary/Keyword: microbial suppression effect

Search Result 27, Processing Time 0.031 seconds

Triclosan Inhibition of Prostaglandin $E_2$ Production in Human Gingival Fibroblast (치은 섬유모세포에서 Triclosan에 의한 Prostaglandin $E_2$ 합성 억제)

  • Park, Seong-Pyu;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.345-356
    • /
    • 2004
  • The triclosan was shown to have anti-microbial and anti-inflammatory effect with inhibition of inflammatory mediators such as prostaglandin $E_2(PGE_2)$. The purpose of this study was to elucidate whether and how $PGE_2$ could be inhibited by triclosan in human gingival fibroblast. Human gingival fibroblast-1 cells (ATCC CRL2014) were pre-treated for 1 hour with triclosan (0.001 ${\mu}/ml{\sim}10$ ${\mu}/ml$) and then stimulated with $TNF-{\alpha}$ (1.0 ng/ml). $PGE_2$ synthesis was evaluated by ELISA and gene expression of COX-1 and COX-2 was evaluated by RT-PCR after $TNF-{\alpha}$, triclosan, and NS-398 (COX-2 inhibitor, 5, ${\mu}M$) and/ or cycloheximide (protein synthesis inhibitor, 2 ${\mu}g/ml$). Triclosan was cytotoxic to human gingival fibroblasts in the concentration higher than 1.0 ${\mu}g/ml$ for longer than 24 hours in tissue culture. The $PGE_2$ synthesis was inhibited by triclosan in dose-dependent manner. Greater COX-2 mRNA suppression was observed with triclosan (0.1 ${\mu}g/ml$) than with $TNF-{\alpha}$ alone, without change in COX-1 gene expression. Inhibitory effects of triclosan on $PGE_2$ synthesis disappeared in presence of cycloheximide. This study suggests that triclosan inhibit prostaglandin $E_2$ at the level of COX-2 gene regulation and require de novo protein synthesis.

Peptide isolated from Hermetia illucens larvae inhibits mice from Klebsiella pneumoniae infection in the kidney (동애등애유충에서 분리된 펩타이드의 신장에서의 폐렴간균 감염 억제 효능)

  • Lee, Dong-Hun;Chu, Ki-Back;Kang, Hae-Ji;Lee, Su-Hwa;Quan, Fu-Shi
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.283-289
    • /
    • 2019
  • Overuse of antibiotics has significantly contributed to an increase in microbial antibiotic resistance, causing difficulties in the suppression of microbe-borne infectious diseases. In this study, we determined the anti-Klebsiella pneumoniae effect in the kidneys of mice induced by peptides isolated from H. illucens larvae. Mice were intranasally infected with a high dose of K. pneumoniae and 1 day later, peptides were introduced through the intramuscular route. Mice were sacrificed on day 10 upon K. pneumoniae infection to determine the bacterial loads in the kidneys. Mice receiving peptide treatment demonstrated significantly reduced bacterial loads, reduced bodyweight loss, and higher survival in a dose-dependent manner compared to control. These results indicate that peptide isolated from H. illucens larva inhibits K. pneumoniae infection in the kidney. The peptide from H. illucens larva could be a potential candidate for the development of an effective antibacterial drug.

Characterization and Antifungal Activity from Soilborne Streptomyces sp. AM50 towards Major Plant Pathogens

  • Jang, Jong-Ok;Lee, Jung-Bok;Kim, Beam-Soo;Kang, Sun-Chul;Hwang, Cher-Won;Shin, Kee-Sun;Kwon, Gi-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.346-356
    • /
    • 2011
  • BACKGROUND: Chemical fungicides not only may pollute the ecosystem but also can be environmentally hazardous, as the chemicals accumulate in soil. Biological control is a frequently-used environment-friendly alternative to chemical pesticides in phytopathogen management. However, the use of microbial products as fungicides has limitations. This study isolated and characterized a three-antifungal-enzyme (chitinase, cellulase, and ${\beta}$-1,3-glucanase)-producing bacterium, and examined the conditions required to optimize the production of the antifungal enzymes. METHOD AND RESULTS: The antifungal enzymes chitinase, cellulase, and ${\beta}$-1,3-glucanase were produced by bacteria isolated from an sawmill in Korea. Based on the 16S ribosomal DNA sequence analysis, the bacterial strain AM50 was identical to Streptomyces sp. And their antifungal activity was optimized when Streptomyces sp. AM50 was grown aerobically in a medium composed of 0.4% chitin, 0.4% starch, 0.2% ammonium sulfate, 0.11% $Na_2HPO_4$, 0.07% $KH_2PO_4$, 0.0001% $MgSO_4$, and 0.0001% $MnSO_4$ at $30^{\circ}C$. A culture broth of Streptomyces sp. AM50 showed antifungal activity towards the hyphae of plant pathogenic fungi, including hyphae swelling and lysis in P. capsici, factors that may contribute to its suppression of plant pathogenic fungi. CONCLUSION(S): This study demonstrated the multiantifungal enzyme production by Streptomyces sp. AM50 for the biological control of major plant pathogens. Further studies will investigate the synergistic effect, to the growth regulations by biogenic amines and antifungal enzyme gene promoter.

Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice

  • Jeon, Hee-Jin;Yeom, Yiseul;Kim, Yoo-Sun;Kim, Eunju;Shin, Jae-Ho;Seok, Pu Reum;Woo, Moon Jea;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • BACKGROUD/OBJECTIVES: The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. MATERIALS/METHODS: Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. RESULTS: The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis $factor-{\alpha}$, Interleukin $(IL)-1{\beta}$, and IL-6, and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. CONCLUSION: Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted.

Effect of Legume Cover Crops and Nitrogen Fertilization Rates on Yield and Nitrogen Use Efficiency of Waxy Corn (Zea mays L.) in No-Tillage System

  • Choi, Jong-Seo;Kim, Min-Tae;Ryu, Jin-Hee;Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • The adoption of legume cover crops in no-tillage system can contribute to improve soil fertility by providing several benefits, including reduction in soil erosion, suppression of weed growth and N supply to subsequent crops. We conducted a field study to investigate the effect of cover crops and nitrogen fertilization rates on yield and nitrogen use efficiency of waxy corn (Zea mays L.) in no-tillage upland field. Two legume cover crops, hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnuturn L.) were mechanically terminated with roller in early June. For each cover crop treatment, nitrogen (N) fertilizer was applied at three different rates (145, 72.5 and $0kg\;N\;ha^{-1}$). The growth and yield characteristics of corn were significantly affected by the N fertilization rates in crimson clover plots, which suggest N mineralization from the cover crop residue was not sufficient. In contrast, N fertilization rates had no significant effect on growth and yield of corn in hairy vetch plots, indicating that the amount of N released from the cover crop is large enough to meet most of the N requirement of corn. However, the application of N fertilizer in hairy vetch cover plots resulted in slight increase of crop yield, though not statically significant, and high levels of N concentration in corn plant tissue possibly due to luxury consumption of N. Organic residues on the soil surface in hairy vetch cover plots had substantial amounts of N after harvest, ranging from 100 to $116kg\;N\;ha^{-1}$, which is presumably retained during winter season and released by microbial mineralization in subsequent year. The highest nitrogen yield efficiency was achieved in the plot with hairy vetch cover and no N fertilizer application, followed by the plot with hairy vetch cover and $72.5kg\;N\;ha^{-1}$ fertilization rate. In conclusion, hairy vetch showed better performance in corn productivity as compared with crimson clover. In addition, it was concluded that the application of N fertilizer between 0 and $72.5kg\;N\;ha^{-1}$ in combination with hairy vetch cover crop might be most efficient for corn yield under no-tillage system with climatic and soil characteristics similar to those of the experimental site.

Effect of Chlorine Dioxide (ClO2) on the Malodor Suppression of Chicken Feces (이산화염소(ClO2) 처리가 계분의 악취 억제에 미치는 영향)

  • Ji Woo, Park;Gyeongjin, Kim;Tabita Dameria, Marbun;Duhak, Yoon;Changsu, Kong;Sang Moo, Lee;Eun Joong, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study evaluated the efficacy of chlorine dioxide (ClO2) as an oxidant to reduce malodor emission from chicken feces. Two experiments were performed with the following four treatments in parallel: 1) fresh chicken feces with only distilled water added as a control, 2) a commercial germicide as a positive control, and 3) 2,000 or 4) 3,000 ppm of ClO2 supplementation. Aluminum gas bags containing chicken feces sealed with a silicone plug were used in both experiments, and each treatment was tested in triplicate. In Experiment 1, 10 mL of each additive was added on the first day of incubation, and malodor emissions were then assessed after 10 days of incubation. In Experiment 2, 1 mL of each additive was added daily during a 14-day incubation period. At the end of the incubation, gas production, malodor-causing substances (H2S and NH3 gases), dry matter, pH, volatile fatty acids (VFAs), and microbial enumeration were analyzed. Supplementing ClO2 at 2,000 and 3,000 ppm significantly reduced the pH and the ammonia-N, total VFA, H2S, and ammonia gas concentrations in chicken feces compared with the control feces (P<0.05). Additionally, microbial analysis indicated that the number of coliform bacteria was decrease after ClO2 treatment (P<0.05). In conclusion, ClO2 at 2,000 and 3,000 ppm was effective at reducing malodor emission from chicken feces. However, further studies are warranted to examine the effects of ClO2 at various concentrations and the effects on malodor emission from a poultry farm.

Extract from Prunus mume Sieb. et Zucc. Fruit Prevents LPS-induced Homotypic Aggregation of Monocytic THP-1 Cells via Suppression of Nitric Oxide Production and NF-κB Activation (매실 추출물의 산화질소 생성과 NF-κB 활성 조절을 통한 LPS유도성 THP-1 세포 동형성 응집의 억제 효과)

  • Lee, Hye-Rim;Park, Youngsook;Kim, Hyun Jeong;Lee, Aram;Choi, Jihea;Pyee, Jaeho;Park, Heonyong;Kim, Jongmin
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.801-809
    • /
    • 2015
  • Homotypic cell adhesion (homotypic aggregation) in activated monocytes plays a central role in physiological and pathological processes including inflammatory responses, differentiation and migration. The extract of the Prunus mume Sieb. et Zucc. fruit (Maesil) has potential benefits to human health; such as anti-viral, anti-microbial, and anti-cancer activities. Indeed, Maesil extract may modulate inflammatory responses via interference with homotypic aggregation in monocytes. In the present study, the molecular mechanisms underpinning the therapeutic efficacy of Maesil extract in inflammatory diseases were investigated. It was found that Maesil extract inhibited homotypic aggregation in lipopolysaccharide (LPS)-activated monocytes. This was mediated by reduction of nitric oxide (NO) production, partly via inhibition of inducible nitric oxide synthase (iNOS) expression in LPS-activated THP-1 cells. It was confirmed that NO inhibition is a key mechanism in Maesil induced blockade of monocyte aggregation through identification of reversal of this inhibitory effect by the NO-producing agent S-nitroso-N-acetyl penicillamine (SNAP). In addition, Maesil extract significantly attenuated LPS-induced IκB-α phosphorylation and NF-κB translocation into the nucleus. In conclusion, Maesil extract exerts anti-inflammatory effects via inhibition of homotypic aggregation of LPS-activated monocytes through mechanisms involving the suppression of NO production and NF-κB activity, suggesting Maesil extract as a potential therapeutic candidate for the prevention and treatment of chronic inflammatory diseases.