• 제목/요약/키워드: microbial strain

검색결과 626건 처리시간 0.03초

Symbiotic Bacterial Flora Changes in Response to Low Temperature in Reticulitermes speratus KMT001

  • Lee, Dongmin;Kim, Yeong-Suk;Kim, Young-Kyoon;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.713-725
    • /
    • 2018
  • Lower termites require symbiotic microbes in their gut. The microbial communities in the termites must adapt to the termite temperature. Reticulitermes speratus KMT001 from Bukhan Mountain in Seoul may require a special symbiotic microorganisms for growth in low temperature Korean habitat. A metagenomics analysis showed a dramatic change in the symbiotic bacterial flora in the gut of R. speratus KMT001 in response to low temperatures of $4^{\circ}C$ or $10^{\circ}C$. Elusimicrobia, which are endosymbionts of flagellate protists, is the dominant phylum in the termite gut at ${\geq}15^{\circ}C$ but its population decreased drastically at low temperature. Four representative bacterial strains isolated from R. speratus KMT001 in a previous study produced maximum ${\beta}$-glucosidase levels within the temperature range of $10^{\circ}C-30^{\circ}C$. Elizabethkingia sp. BM10 produced ${\beta}$-glucosidase specifically at $10^{\circ}C$. This strain supported the existence of symbiotic bacteria for the low temperature habitat of the termite. This identified bacterium will be a resource for studying low temperature adaptation of termites, studying the gene expression at low temperatures, and developing an industrial cellulase at low temperature.

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • 오원근;이현선;박찬선;안순철;고학룡;민태익;안종석
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF

Identification and Distribution of Bacillus Species in Doenjang by Whole-Cell Protein Patterns and 16S rRNA Gene Sequence Analysis

  • Kim, Tae-Woon;Kim, Young-Hoon;Kim, Sung-Eon;Lee, Jun-Hwa;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권8호
    • /
    • pp.1210-1214
    • /
    • 2010
  • Many bacteria are involved in the fermentation of doenjang, and Bacillus species are known to perform significant roles. Although SDS-PAGE has been frequently used to classify and identify bacteria in various samples, the microbial diversity in doenjang has not yet been investigated. This study aims to determine the identity and distribution of dominant Bacillus species in doenjang using SDS-PAGE profiles of whole-cell proteins and 16S rRNA gene sequencing. Reference Bacillus strains yielded differential SDS-PAGE banding patterns that could be considered to be highly specific fingerprints. Grouping of bacterial strains isolated from doenjang samples by whole-cell protein patterns was confirmed by analysis of their 16S rRNA gene sequences. B. subtilis was found to be the most dominant strain in most of the samples, whereas B. licheniformis and B. amyloliquefaciens were less frequently found but were also detected in several samples. The results obtained in this study show that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully identify Bacillus species isolated from doenjang.

Construction of a Biofilter Immobilized with Rhodococcus sp. B261 for Removal of H2S Gas Generated by Livestock

  • Yun, Soon-Il
    • Journal of Applied Biological Chemistry
    • /
    • 제51권6호
    • /
    • pp.307-314
    • /
    • 2008
  • To explore the optimal conditions for the removal of $H_{2}S$ gas by biofiltration, various conditions, including inlet $H_{2}S$ concentration, flow rate, moisture, and cell number, were examined. Heterotrophic bacteria were isolated from the compost of the animal excreta. A strain that effectively removed $H_{2}S$ was selected and identified as Rhodococcus rhodochrous B261 by analysis of its 16S rDNA sequence. A cell number of $10^{7}\;cfu/g^{-}compost$ was sufficient to dominate the microbiota, and an effective removal was observed at $H_{2}S$ gas concentrations below 220 mg/L. The moisture content of 33-38% was suitable for activation of the microbial activity and delaying the desiccation. Higher flow rates resulted in lower removal rates of the $H_{2}S$ gas. Under the conditions of $10^7\;cfu/g^{-}compost$, $H_{2}S$ gas concentrations of 220 mg/L, and moisture content of 33-38%, the inlet $H_{2}S$ gas concentrations of 120 and 400 mg/L were completely removed for 34 and 12 days, respectively. The amount of sulfur removed was $2.99{\times}10^{-9}H_{2}S-S/cell$, which was suggested as the amount of sulfur removed by a single cell. The biofilter consisting of the compost and R. rhodochrous B261 could be suitable for a long-term biofilteration for the removal of $H_{2}S$ and other malodorous compounds.

누룩으로부터 맥아당 이용능과 에탄올 생산성이 우수한 효모의 분리와 특성 (Isolation and Characterization of Saccharomyces cerevisiae from nuruk for Production of Ethanol from Maltose)

  • 최다혜;최영환;여수환;김명동
    • 한국미생물·생명공학회지
    • /
    • 제44권1호
    • /
    • pp.34-39
    • /
    • 2016
  • 전국에서 수집한 누룩으로부터 50점의 S. cerevisiae 균주를 분리하고 18S rRNA 유전자 영역 중 ITS 단편의 염기서열 분석을 통하여 동정하였다. 누룩에서 분리한 S. cerevisiae 균주 중 MBYK45로 명명된 균주는 대조구 균주 및 누룩에서 분리한 다른 균주들에 비해 맥아당을 이용한 균체성장 및 에탄올 생산성이 우수하였다. MBYK45 균주는 맥아당 농도 20%, 배지 pH 6.0, 배양온도 $35^{\circ}C$ 조건에서 에탄올 생산성이 $3.79{\pm}0.14g^{-1}l^{-1}h^{-1}$로 가장 우수하였고 $110.80{\pm}0.81g/l$ 에탄올을 생산하였다. 본 연구를 통하여 맥아를 원료로 하는 전통주 제조에 적합한 것으로 사료되는 S. cerevisiae MBYK45 균주를 누룩으로부터 분리하였으며 균체성장 및 에탄올 생산을 위한 최적 배양조건을 설정하였다.

Microbiota and Physicochemical Analysis on Traditional Kocho Fermentation Enhancer to Reduce Losses (Gammaa) in the Highlands of Ethiopia

  • Dibaba, Adane Hailu;Tuffa, Ashenafi Chaka;Gebremedhin, Endrias Zewdu;Nugus, Gerbaba Guta;Gebresenbet, Girma
    • 한국미생물·생명공학회지
    • /
    • 제46권3호
    • /
    • pp.210-224
    • /
    • 2018
  • Warqe (Ensete ventricosum) has been traditionally fermented in an earthen pit to yield a carbohydrate-rich food product named kocho, for generations. A fermentation enhancer (gammaa) was added to this fermenting mass to enhance the fermentation process. The objectives of this study were to assess the physicochemical properties and microbiota of the kocho fermentation enhancer culture to reduce losses. Cross-sectional study design was implemented to collect 131 gammaa samples on the first day of fermentation. The samples were further classified into four groups according to the duration of fermentation (14, 21, 30, and 60 days) practised in various households traditionally. The results showed that the fermentation time significantly affected the physicochemical properties and microbial load of gammaa (p < 0.01). As the fermentation progressed from day 1 to 60, the pH decreased and the titratable acidity increased. The total coliform, Enterobacteriaceae, aerobicmesophilic bacteria (AMB), yeast, and mould counts were significantly reduced at the end of fermentation. In contrast, the number of lactic acid bacteria (LAB) increased significantly until day 30 of fermentation, because of the ability of the LAB to grow at low pH. Lactobacillus species from LAB isolates and Enter obacteriaceae from AMB isolates were the most abundant microorganisms in gammaa fermentation. However, the Enterobacteriaceae and Lactobacilli species count showed decreasing and increasing trends, respectively, as the fermentation progressed. These isolates must be investigated further to identify the species and strain, so as to develop gammaa at the commercial scale.

Isolation, Identification, and Characterization of Pichia guilliermondii K123-1 and Candida fermentati SI, Producing Isoflavone β-Glycosidase to Hydrolyze Isoflavone Glycoside Efficiently, from the Korean Traditional Soybean Paste

  • Kim, Won-Chan;So, Jai-Hyun;Kim, Sang-In;Shin, Jae-Ho;Song, Kyung-Sik;Yu, Choon-Bal;Kho, Yung-Hee;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • 제52권4호
    • /
    • pp.163-169
    • /
    • 2009
  • A total of 155 microbial strains were isolated from the Korean traditional soybean paste based on their morphological features on the growth of agar plate. Among the isolated strains, a total of 28 strains were capable of hydrolyzing isoflavone glycoside to isoflavone aglycone efficiently in the soybean paste. Finally, two strains, K123-1 and SI, were selected because of their resistance to 15% NaCl and ability to convert isoflavone glycoside to isoflavone aglycone efficiently during the fermentation of soybean paste. The isolated strains K123-1 and SI were identified to be Pichia guilliermondii and Candida fermentati, respectively, using the partial 26S rDNA sequence analysis and phylogenic analysis. Pichia guilliermondii K123-1 and Candida fermentati SI converted daidzin to daidzein up to 96% and 95%, respectively, and genistin to genistein up to 92% when soybean pastes were fermented at $30^{\circ}C$ for 20 days with a single isolated strain. Pichia guilliermondii K123-1 and Candida fermentati SI were able to grow in the presence of 15% NaCl on both liquid medium and agar plate. We think that Pichia guilliermondii K123-1 and Candida fermentati SI might be one of good candidates for making functional soybean paste because they are isolated from the Korean traditional soybean paste and have a good ability to convert isoflavone glycosides to isoflavone aglycones and a high salt tolerance.

유산균의 분리와 동정 및 제제화에 관한 연구 (Studies on the Isolation and Identification of Lactic Acid Bacteria and its Utilization for Pharmaceutical Preparation)

  • 김성웅;김원배;박무영;양중익;민신홍;이상희;김용배
    • 한국미생물·생명공학회지
    • /
    • 제5권4호
    • /
    • pp.171-175
    • /
    • 1977
  • 분리된 미생물은 pH 4.5내지 pH 8.0에서 100% 안정성을 나타내며 에너지원이 전혀 공급되지 않은 상태에서도 37$^{\circ}C$의 용액중에서 48시간 이고 경과시도 80% 이상의 높은 생존율을 나타낸다. 생리식염수에서는 4$0^{\circ}C$에서 한 시간 방치하는 경우도 90% 이상의 높은 생존율을 나타낸다는 것을 알수 있었다. 이러한 조건들을 검토해볼 때 생장내 조건에서 상당히 안정하며 경구투여제로 투여하기에 충분히 적당하다고 결론지을 수 있겠다. 특히 포만시에 투여하는 것이 더욱 효과적인 것으로 사료되므로 소화제등과 혼용한 약제로 축발하는 것이 바람직하리라 기대된다.

  • PDF

다시마(Saccharina japonica)김치에서 분리한 유산균의 항산화 및 콜레스테롤 감소 효과 (Antioxidant and Cholesterol-lowering Effects of Lactic Acid Bacteria Isolated from Kelp Saccharina japonica Kimchi)

  • 류대규;박슬기;강민균;정민철;정희진;강동민;이재화;김영목;이명숙
    • 한국수산과학회지
    • /
    • 제53권3호
    • /
    • pp.351-360
    • /
    • 2020
  • Previous studies have suggested that microbial fermentation is an attractive process to develop food products using seaweed. The objective of this study was to isolate and characterize lactic acid bacteria (LAB), which are used as starters for seaweed fermentation. The isolation of LAB strains was conducted using kelp Saccharina japonica kimchi, a well-known fermented seaweed in southeastern Korea. Based on the assay of acid tolerance, bile tolerance and antioxidant activity, 15 strains of LAB were selected for further study. The LABs exhibited cholesterol lowering activity in the range of 15.50 to 94.77%. Among the LABs suitable for food production, Lactobacillus plantarum D-11 had the highest antioxidant and cholesterol lowering activities. This probiotic strain will be applied to develop various kelp fermentation products.