Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP (Department of Biological Resources and Technology, Yonsei University) ;
  • BREIDT FRED (Department of Food Science, North Carolina State University) ;
  • FLEMING H. P. (Department of Food Science, North Carolina State University) ;
  • SHIN WON-CHEOL (Kangwon National University) ;
  • YOON SUNG-SIK (Institute of Functional Biomaterials and Biotechnology)
  • Published : 2006.01.01

Abstract

Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Breidt, F. and H. P. Fleming. 1996. Identification of lactic acid bacteria by ribotyping. J. Rapid Meth. Auto. Microbiol. 4: 219-233 https://doi.org/10.1111/j.1745-4581.1996.tb00125.x
  3. Chiegh, H. S. and K. Y. Kwon. 1994. Biochemical, microbiological and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34: 175-203 https://doi.org/10.1080/10408399409527656
  4. Chin, H.-S., J. S. Shim, J.-M. Kim, R. Yang, and S.-S. Yoon. 2001. Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10: 461-467
  5. Choi, H. J., Y. J. Shin, J. H. Yu, and S. S. Yoon. 1996. A new selective medium for the isolation and the detection of leuconostocs in foodstuffs. Kor. J. Food Sci. Technol. 28: 279-284
  6. Choi, I.-K., S.-H. Jung, A.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek. 84: 247-253 https://doi.org/10.1023/A:1026050410724
  7. Cocconeil, P. S., D. Porro, S. Galandini, and L. Senini. 1995. Development of RAPD protocol for typing of strain of lactic acid bacteria and Enterococci. Lett. Appl. Microbiol. 21: 376-379 https://doi.org/10.1111/j.1472-765X.1995.tb01085.x
  8. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organism from fermented sausage; description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603 https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  9. Felsenstein, J. 1992. Estimating effective population size from samples of sequences: A bootstrap Monte Carlo integration method. Genet Res. 60: 209-220 https://doi.org/10.1017/S0016672300030962
  10. Han, H., J. R. Lim, and H. K. Park. 1990. Determination of microbial community as an indicator of kimchi fermentation. Kor. J. Food Sci. Technol. 22: 26-32
  11. Jang, J. C., B. Kim, J. Lee, J. Kim, G. Jeong, and H. Han. 2002. Identification of Weissella species by genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol. Lett. 212: 29-34 https://doi.org/10.1111/j.1574-6968.2002.tb11240.x
  12. Jensen, M. A., J. A. Webster, and N. Straus. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59: 945-952
  13. Johansson, M. L., M. Quednau, G. Molin, and S. Agrne. 1995. Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett. Appl. Microbiol. 21: 155-159 https://doi.org/10.1111/j.1472-765X.1995.tb01030.x
  14. Kim, J., J. Chun, and H.-U. Han. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50: 1915-1919 https://doi.org/10.1099/00207713-50-5-1915
  15. Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642
  16. Ku, Y. J. and S. Y. Choi. 1991. In: 'Science and Technologies of Kimchi', Changjo Co, Seoul. pp. 140-141
  17. Kullen, M. J., R. B. Sanosky-Dawes, D. C. Crowell, and T. R. Klaenhammer. 2000. Use of DNA sequence of variable region of the 16sRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 89: 511-518 https://doi.org/10.1046/j.1365-2672.2000.01146.x
  18. Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microbial changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Bioeng. 20: 102-109
  19. Lee, J.-S., G.-Y. Heo, J. W. Lee, Y.-J. Oh, J. A. Park, Y.-H. Park, Y.-R. Park, and J.-S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150 https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  20. Medina, M., A. G. Collins, J. D. Silberman, and M. L. Sogin. 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc. Natl. Acad. Sci. USA 98: 9707-9712
  21. Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentrations on kimchi fermentation. Kor. J. Food Sci. Technol. 16: 433-440
  22. Park, K. K., J. R. Lim, and H. E. Han. 1990. Bacterial transition of fermenting kimchi at different temperature. Bulletin of Basic Science, Inha University, Incheon, S. Korea. 11: 161-169
  23. Moschetti, G., G. Blaiotta, F. Villani, and S. Coppla. 2000. Specific detection of Leuc. mesenteroides subsp. mesenteroides with DNA primers identified by randomly amplified polymorphic DNA analysis. Appl. Environ. Microbiol. 66: 422- 424 https://doi.org/10.1128/AEM.66.1.422-424.2000
  24. Roggrigues, U. M., M. Aguirre, R. R. Facklammand, and M. D. Collins. 1991. Specific and intraspecific molecular typing of Lactococci based on polymorphism of DNA encoding rRNA. J. Appl. Bacteriol. 88: 260-265
  25. Schloter, M., M. Lebuhn, T. Heulin, and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS Micrbiol. Rev. 24: 647-660 https://doi.org/10.1111/j.1574-6976.2000.tb00564.x
  26. Schleifer, K. H., M. Ehrmann, C. Beimfohr, E. Brockmann, W. Ludwig, and R. Amann. 1995. Application of molecular method for the classification and identification of lactic acid bacteria. Int. Dairy J. 5: 1081-1094 https://doi.org/10.1016/0958-6946(95)00047-X
  27. Sneath, P. H. A., N. S. Mair, M. E. Sharp, and J. G. Holt. 1986. pp. 1071-1075. In: Bergey's Manual of Systematic Bacteriology, vol 2, Williams & Wilkins, N.Y
  28. Stephan, R. 1996. Randomly amplified polymorphic DNA (RAPD) assay for genomic fingerprinting of Bacillus cereus isolates. Int. J. Food Microbiol. 31: 311-316 https://doi.org/10.1016/0168-1605(96)00966-X
  29. Vandamme, P., B. Pot, M. Gillis, W. de Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
  30. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acid. Res. 18: 6531-6535 https://doi.org/10.1093/nar/18.22.6531
  31. Yimin, C., S. Kumai, M. Ogawa, Y. Benno, and T. Nakase. 1999. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl. Environ. Microbiol. 65: 2901- 2906