DOI QR코드

DOI QR Code

Symbiotic Bacterial Flora Changes in Response to Low Temperature in Reticulitermes speratus KMT001

  • Lee, Dongmin (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Kim, Young-Kyoon (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
  • Received : 2018.07.10
  • Accepted : 2018.11.12
  • Published : 2018.11.25

Abstract

Lower termites require symbiotic microbes in their gut. The microbial communities in the termites must adapt to the termite temperature. Reticulitermes speratus KMT001 from Bukhan Mountain in Seoul may require a special symbiotic microorganisms for growth in low temperature Korean habitat. A metagenomics analysis showed a dramatic change in the symbiotic bacterial flora in the gut of R. speratus KMT001 in response to low temperatures of $4^{\circ}C$ or $10^{\circ}C$. Elusimicrobia, which are endosymbionts of flagellate protists, is the dominant phylum in the termite gut at ${\geq}15^{\circ}C$ but its population decreased drastically at low temperature. Four representative bacterial strains isolated from R. speratus KMT001 in a previous study produced maximum ${\beta}$-glucosidase levels within the temperature range of $10^{\circ}C-30^{\circ}C$. Elizabethkingia sp. BM10 produced ${\beta}$-glucosidase specifically at $10^{\circ}C$. This strain supported the existence of symbiotic bacteria for the low temperature habitat of the termite. This identified bacterium will be a resource for studying low temperature adaptation of termites, studying the gene expression at low temperatures, and developing an industrial cellulase at low temperature.

Keywords

References

  1. Ahn, S.J., Costa, J., Emanuel, J.R. 1996. PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Research 24(13): 2623-2625. https://doi.org/10.1093/nar/24.13.2623
  2. Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-180. https://doi.org/10.1038/nrmicro3182
  3. Brune, A., Ohkuma, M. 2011. Role of the termite gut microbiota in symbiotic digestion. In: Biology of termites: A modern synthesis. Ed. by Bignell D.E., Roisin Y., and Lo N., Springer. pp. 439-475.
  4. Cho, M.-J., Kim, Y.-H., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010a. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-$\beta$-1,4-glucanase activity. Biochemical and Biophysical Research Communications 395(3): 432-435. https://doi.org/10.1016/j.bbrc.2010.04.048
  5. Cho, M.J., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010b. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. Journal of the Korean Wood Science and Technology 38(2): 135-139. https://doi.org/10.5658/WOOD.2010.38.2.135
  6. Cleveland, L.R. 1923. Symbiosis between termites and their intestinal protozoa. Proceedings of the National Academy of Sciences of the United States of America 9(12): 424-428. https://doi.org/10.1073/pnas.9.12.424
  7. Evans, T.A., Forschler, B.T., Grace, J.K. 2013. Biology of invasive termites: A worldwide review. Annual Review of Entomology 58(1): 455-474. https://doi.org/10.1146/annurev-ento-120811-153554
  8. Geissinger, O., Herlemann, D.P.R., Mörschel, E., Maier, U.G., Brune, A. 2009. The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Applied and Environmental Microbiology 75(9): 2831-2840. https://doi.org/10.1128/AEM.02697-08
  9. Ghaly, A.E., Edwards, S. 2011. Termite damage to buildings: Nature of attacks and preventive construction methods. American Journal of Engineering and Applied Sciences 4(2): 187-200. https://doi.org/10.3844/ajeassp.2011.187.200
  10. Herlemann, D.P.R., Geissinger, O., Brune, A. 2007. The termite group I phylum is highly diverse and widespread in the environment. Applied and Environmental Microbiology 73(20): 6682-6685. https://doi.org/10.1128/AEM.00712-07
  11. Hongoh, Y., Ohkuma, M., Kudo, T. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiology Ecology 44(2): 231-242. https://doi.org/10.1016/S0168-6496(03)00026-6
  12. Inoue, T., Murashima, K., Azuma, J.I., Sugimoto, A., Slaytor, M. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology 43(3): 235-242. https://doi.org/10.1016/S0022-1910(96)00097-2
  13. Jung, H.-S., Choi, Y., Oh, J.-H., Lim, G.-H. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatoogy 22: 1327-1337. https://doi.org/10.1002/joc.797
  14. Kafri, M., Metzl-Raz, E., Jona, G., Barkai, N. 2016. The cost of protein production. Cell Reports 14(1): 22-31. https://doi.org/10.1016/j.celrep.2015.12.015
  15. Kim, M.J., Choi, Y.S., Lee, J., Kim, J.J., Kim, G.H. 2012. Molecular characteristics of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae) from Korea. Annals of the Entomological Society of America 105(1): 97-102. https://doi.org/10.1603/AN11078
  16. Kim, S.H., Chung, Y.J. 2017. Ingestion toxicity of fipronil on Reticulitermes speratus kyushuensis (Isoptera: Rhinotermitidae) and its applicability as a termite bait. Journal of the Korean Wood Science and Technology 45(2): 159-167. https://doi.org/10.5658/WOOD.2017.45.2.159
  17. Kim, Y.H., Lee, Y.M., Kim, Y.S., Cho, M.J., Shin, K. 2010. Cellulase production in the digestive organs of Reticulitermes speratus, a native termite from Milyang Korea. Journal of the Korean Wood Science and Technology 38(5): 421-428. https://doi.org/10.5658/WOOD.2010.38.5.421
  18. Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidin-rich extracts from Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 720-727. https://doi.org/10.5658/WOOD.2017.45.6.720
  19. Needleman, S.B., Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3): 443-453. https://doi.org/10.1016/0022-2836(70)90057-4
  20. Ohkuma, M., Kudo, T. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62(2): 461-468.
  21. Park, Y.C., Kitade, O., Schwarz, M., Kim, J.P., Kim, W. 2006. Intraspecific molecular phylogeny, genetic variation and phylogeography of Reticulitermes speratus (Isoptera: Rhinotermitidae). Molecular Cell 21(1): 89-103.
  22. Peterson, B.F., Scharf, M.E. 2016. Lower termite associations with microbes: Synergy, protection, and interplay. Frontiers in Microbiology 7(422).
  23. Peterson, C., Wagner, T.L., Mulrooney, J.E., Shelton, T.G. 2006. Subterranean termites - their prevention and control in buildings. Home and Garden Bulletin 64. pp. 38.
  24. Rose, J.M., Caron, D.A. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography 52(2): 886-895. https://doi.org/10.4319/lo.2007.52.2.0886
  25. Rosengaus, R.B., Zecher, C.N., Schultheis, K.F., Brucker, R.M., Bordenstein, S.R. 2011. Disruption of the termite gut microbiota and its prolonged consequences for fitness. Applied and Environmental Microbiology 77(13): 4303-4312. https://doi.org/10.1128/AEM.01886-10
  26. Shi, Y., Huang, Z., Han, S., Fan, S., Yang, H. 2015. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology 55(8): 1021-1028. https://doi.org/10.1002/jobm.201400678
  27. Watanabe, H., Tokuda, G. 2010. Cellulolytic systems in insects. Annual Review of Entomology 55(1): 609-632. https://doi.org/10.1146/annurev-ento-112408-085319
  28. Yang, H., Schmitt-Wagner, D., Stingl, U., Brune, A. 2005. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental Microbiology 7(7): 916-932. https://doi.org/10.1111/j.1462-2920.2005.00760.x