• 제목/요약/키워드: microbial populations

Search Result 366, Processing Time 0.024 seconds

Combined Effect of Kimchi Powder and Onion Peel Extract on Quality Characteristics of Emulsion Sausages Prepared with Irradiated Pork

  • Lee, Soo-Yoen;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Choi, Min-Sung;Ham, Youn-Kyung;Choi, Yun-Sang;Lee, Ju-Woon;Lee, Si-Kyung;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.277-285
    • /
    • 2015
  • This study was conducted to investigate the effects of kimchi powder and onion peel extract on the quality characteristics of emulsion sausage manufactured with irradiated pork. The emulsion sausages were formulated with 2% kimchi powder and/or 0.05% onion peel extract. The changes in pH value of all treatments were similar, depending on storage periods. The addition of kimchi powder increased the redness and yellowness of the emulsion sausage. The addition of onion peel extract decreased the thiobarbituric acid reactive substances value of the emulsion sausages prepared with irradiated pork. The volatile basic nitrogen value of the emulsion sausage prepared with kimchi powder was the highest, whereas that of the emulsion sausage prepared with onion peel extract was the lowest. The treatment without kimchi powder or onion peel extract and the treatments prepared with onion peel extract showed lower microbial populations than the other treatment. Sensory evaluations indicated that a higher acceptability was attained when kimchi powder was added to the emulsion sausages manufactured with irradiated pork. In conclusion, our results suggest that combined use of kimchi powder and onion peel extract could improve quality characteristics and shelf stability of the emulsion sausage formulated with irradiated pork during chilled storage.

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk (우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과)

  • Moon, Yong-II;Jung, Ji Yun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

EFFECTS OF AMMONIATED RICE STRAW FEEDING ON MICROBES AND THEIR FERMENTATION END-PRODUCTS IN THE RUMEN AND CAECUM OF SHEEP

  • Cann, I.K.O.;Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 1993
  • Three sheep fitted with cannulas in the rumen and the caecum were used in a $3{\times}3$ Latin square design to study the changes in ruminal and caecal microbial populations and their metabolite composition with ammoniated rice straw feeding. The 3 diets contained either 80% untreated rice straw (UTS) or ammoniated rice straw (ATS) and 20% formula feed. These were a control diet (C), a urea supplemented diet (U) containing urea at 1.1% and an ammoniated rice straw diet (AT). Data were analyzed by analysis of variance and means separated by the Student Neumann Kuel's multiple comparison. AT feeding increased ruminal bacterial counts, in particular cellulolytic bacterial counts (p < 0.05) which were 1.8, 2.4 and 7.0 (${\times}10^6/ml$ ruminal fluid) for C, U and AT, respectively. There was an increasing tendency (p < 0.10) in ruminal fungal population with U; values were 2.0, 5.2, 3.1 (${\times}10^3/ml$ ruminal fluid) for C, U and AT, respectively. Ruminal protozoa counts were not significantly (p > 0.05) altered with diets. Caecal total viable bacterial count with AT was about thrice the value with C. Total VFA concentration in the rumen was significantly increased (p < 0.025) (7.7 mmol/dl for C and 8.2 mmol/dl for AT) and correspondingly, pH lowered when AT was fed. Sheep on AT tended to produce less acetate and more butyrate in the rumen without significance (p > 0.05). Similar to the rumen, total VFA concentrations of 4.4, 3.8 and 5.2 mmol/dl were detected, respectively, for C, U and AT. Caecal ammonia-nitrogen concentrations were about six-fold of that in the rumen, though there were no differences (p > 0.05) among treatments.

Effect of Exogenous Xylanase Supplementation on the Performance, Net Energy and Gut Microflora of Broiler Chickens Fed Wheat-based Diets

  • Nian, F.;Guo, Y.M.;Ru, Y.J.;Li, F.D.;Peron, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.400-406
    • /
    • 2011
  • An experiment was carried out to assess the effects of xylanase supplementation on the performance, net energy and gut microflora of broilers fed a wheat-based diet. Day-old male broiler chicks were allocated to two dietary treatments. Each treatment was composed of six replicate cages of seven broilers per cage. The diets were wheat-based and offered as mash. The treatments included i) basal diet deficient in metabolizable energy; and ii) basal diet supplemented with a commercial xylanase added at 4,000 U/kg feed. Bird performance, nutrient utilization and gut microbial populations were measured. Heat production and net energy were determined using an auto-control, open circuit respiration calorimetry apparatus. Results showed that exogenous xylanase supplementation improved feed conversion efficiency (p<0.05) and increased diet AME (+4.2%; p<0.05), as well as heat production (HP), net energy for production (NEp), production of $CO_2$, and consumption of $O_2$. The respiratory quotient (RQ) was also increased (p<0.01) by the addition of xylanase. NEp value was increased by 26.1% while daily heat production per kg metabolizable body weight was decreased by 26.2% when the xylanase was added. Xylanase supplementation numerically increased the ileal digestibility of protein and energy by 3 and 6 percentage units respectively (p>0.05). The ileal digestibility of hemicellulose was significantly improved by xylanase addition (p<0.05).

Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

  • Hao, W.;Wang, H.L.;Ning, T.T.;Yang, F.Y.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.816-826
    • /
    • 2015
  • The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from $10^7$ to $10^{10}cfu/g$ during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to $10^9cfu/g$ DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

Effect of Plant (Salvia sp.) Growth Using Mixed Microorganisms (혼합 미생물이 식물(Salvia)의 생장에 미치는 영향)

  • Choi, Kyung-Min;Park, Eung-Roh;Ju, Hong-Shin;Yang, Jae-Kyung;Suh, Jeung-Keun;Lee, Sung-Taik;Park, Chang-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 1996
  • Effect of effective microorganisms on the growth of plant (salvia sp.) was investigated. Microorganisms used were photosynthetic bacteria, lactic acid bacteria and yeasts. When photosynthetic bacteria were inoculated to soil by 100 dilution, treated plants showed 160% growth by length compared to control. When photosynthetic bacteria, lactic acid bacteria and yeasts were mixed, diluted by 10 and inoculated to soil, the plants showed 212% growth compared to control. Microbial populations were increased in the treated soil.

  • PDF

Comparative Effects of Gamma Irradiation and Ethylene Oxide Fumigation on Sorption Properties and Microbiological Quality of White Ginseng Powder (백삼분말의 흡습특성 및 미생물학적 품질 안정성에 대한 감마선 및 에틸렌옥시드 처리의 영향)

  • Kwon, Joong-Ho;Byun, Myung-Woo;Lee, Soo-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.272-277
    • /
    • 1994
  • The microbial populations of exportable and domestic white ginseng powders, which have been problems in quality control, were higher than the legally-permissive level of microorganisms as $5{\times}10^{4}$/g in total bacteria and as negative coliforms. Various microorganisms contaminated in the sample were effectively decontaminated by gamma irradiation at below 10 kGy as well as ethylene oxide (EO) fumigation. The radiosens.tivity of microorganisms was the highest in coliforms, followed by molds and aerobic bacteria ($D_{10}$: 1.25 kGy). The good microbiological quality could be retained in white ginseng powders for more than 7 months of storage at $30{\pm}2^{\circ}C$ irrespective of relative humidities if products are prepared with a lower moisture content below 10% and treated by gamma irradiation at 5 to 10 kGy in an airtight packaging.

  • PDF

Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

  • Sang, Mee Kyung;Shrestha, Anupama;Kim, Du-Yeon;Park, Kyungseok;Pak, Chun Ho;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.154-167
    • /
    • 2013
  • We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

Effect of Chlorine Dioxide and Commercial Chlorine Sanitizer on Inhibiting Foodborne Pathogens and on Preventing the Formation of Chemically Injured Cells on Radish Sprouts

  • Choi, Mi-Ran;Kang, Dong-Hyun;Heu, Sung-Gi;Lee, Sun-Young
    • Food Quality and Culture
    • /
    • v.3 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • This study assessed the efficacy of aqueous chlorine dioxide ($ClO_2$) and commercial chlorine sanitizer in terms of its ability to eliminate Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 on radish sprouts (Raphanus sativus L.). Radish sprouts were inoculated with a cocktail containing one each of three strains of three different foodborne pathogens, then treated with distilled water (control) or chemical sanitizers (100 ppm commercial chlorine, and 50, 100, 200 ppm $C1O_2$) for 1, 5, and 10 min at room temperature ($22{\pm}2^{\circ}C$). Populations of S. Typhimurium, E. coli O157:H7 and L. monocytogenes were counted at 4.64, 6.05, and 4.29 log CFU/g, respectively, after inoculation. Treatment with water did not significantly reduce the levels of any of the three foodborne pathogens. The levels of all three pathogens were reduced by treatment with chemical sanitizers; however, the observed levels of reduction of E. coli O157:H7 and L. monocytogenes were not significant as compared with the controls. The levels of the three pathogens were reduced most profoundly when treated for 10 min with 200 ppm of $C1O_2$, and the reduction levels of S. Typhimurium, E. coli O157:H7, and L. monocytogenes were 1.17, 1.63, and 0.96 log CFU/g, respectively. When chemically injured cells were investigated using SPRAB for E. coli O157 :H7 and by selective overlay methods for S. Typhimurium and L. monocytogenes, respectively, it was noted that commercial chlorine sanitizer generated more numbers of injured pathogens than did $C1O_2$. These data indicate that $C1O_2$ treatment may prove useful in reducing the numbers of pathogenic bacteria in radish sprouts.

  • PDF

Inhibitory Effects of Chlorine Dioxide and a Commercial Chlorine Sanitizer Against Foodborne Pathogens on Lettuce (양상추에 오염된 병원성 미생물에 대한 Chlorine Dioxide 및 상업적 Chlorine 살균소독제의 저해효과 평가)

  • Choi, Mi-Ran;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study compared the effects of chlorine dioxide and a commercial chlorine sanitizer for inhibiting foodborne pathogens, including Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli O157 : H7, on lettuce leaves. The lettuce samples were inoculated with each cocktail of the three strains, and were then treated with chemical sanitizers [distilled water, 100 ppm commercial chlorine and 50 ppm, 100 ppm, 200 ppm chlorine dioxide ($ClO_2$)] for 1 min, 5 min, and 10 min at room temperature($22{\pm}2^{\circ}C$). Following inoculation of the leaves, initial populations of E. coli O157:H7, L. monocytogenes, and S. Typhimurium were approximately 5.54, 4.47, and 5.12 log CFU/g, respectively these levels were not significantly reduced by the treatment with water,whereas the 100 ppm commercial chlorine sanitizer treatment and $ClO_2$ (at all tested concentrations) were effective at reducing levels of all three pathogens. The treatment of 200 ppm $ClO_2$ for 10 min was most effective at inhibiting the three pathogens, and reduction levels of E. coli O157 : H7, L. monocytogenes, and S. Typhimurium were 2.28, 1.95, 1.76 log, respectively. The inhibitory effect of $ClO_2$ increased with increasing treatment concentration of $ClO_2$, but there was no significant difference by the treatment times. When chemically injured cells of E. coli O157 : H7 and L. monocytogenes and S. Typhimurium were examined by SPRAB and selective overlay methods, respectively, it was observed that the commercial chlorine sanitizer generated greater numbers of injured L. monocytogenes than the $ClO_2$ treatment. From the overall results, $ClO_2$ was more effective at inhibiting pathogenic bacteria compared to the commercial chlorine sanitizer therefore, it has potential to be utilized as an alternative sanitizer to increase the microbial safety of fresh produce.