DOI QR코드

DOI QR Code

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk

우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과

  • Moon, Yong-II (Dept. of Animal Source Foods, Wooseok University) ;
  • Jung, Ji Yun (Division of Animal Science, Chonnam National University) ;
  • Oh, Sejong (Division of Animal Science, Chonnam National University)
  • 문용일 (우석대학교 동물자원식품학과) ;
  • 정지윤 (전남대학교 동물자원학부) ;
  • 오세종 (전남대학교 동물자원학부)
  • Received : 2017.06.15
  • Accepted : 2017.06.25
  • Published : 2017.06.30

Abstract

A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

Keywords

References

  1. Amaha, M. and Ordel, Z. J. 1957. Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J. Bacteriol. 74(5):596-604.
  2. Anzulovic, J. V. 1932. A study of Escherichia coli in ice cream. J. Bacteriol. 23:56-57.
  3. Bradshaw, J. G., Peeler, J. T., Corwin, J. J., Hunt, J. M., Tierney, J. T., Larkin, E. P. and Twedt, R. M. 1985. Thermal resistance of Listeria monocytogenes in milk. J. Food Prot. 48(9):743-745. https://doi.org/10.4315/0362-028X-48.9.743
  4. Bryan, R. L. 1983. Epidemiology of milk-borne diseases. J. Food Prot, 46(7):637-649. https://doi.org/10.4315/0362-028X-46.7.637
  5. Bryan, F. L. 1979. Food-born infection intoxications 2nd ed. Academic Press. New York.
  6. Cameron, E. J. and Bohrer, C. W. 1951. Food preservation with antibiotics the problem of proof. Food Technol. 5(12):26.
  7. Christopher, F. M., Smith, G. C. and Vanderzant, C. 1982. Effect oftemperature and pH on the survival of Campylobacter fetus 1. J. Food Protection 45(3):253-259. https://doi.org/10.4315/0362-028X-45.3.253
  8. Dedie, K. and Schulze, D. 1957. Die Hitzeresistenz. von Listeria monocytogenes in Milch. Berl. Munchener tierarztl. Berlin Nunch Tierarztl. WeChr. 70(10):231-232.
  9. Doyle, M. P. and Roman, D. J. 1981. Growth and survival of Campylobacter fetus subsp. jejuni as a function of temperature and pH. J. Food Prot 44(8):596-601. https://doi.org/10.4315/0362-028X-44.8.596
  10. Enright, J. B., Sadler, W. W. and Thomas, R. C. 1957. Pasteurization of milk containing the organism of Q fever. Ameri. J. Publ. Hlth. 47(6):695-700. https://doi.org/10.2105/AJPH.47.6.695
  11. Esty, J. R. and Meyer, K. F. 1922. J. Infect. The heat resistance of the spores of B. botulinus and allied anaerobes. XI. Journal of Infectious Diseases 31(6): 650-664. https://doi.org/10.1093/infdis/31.6.650
  12. FirstenbergEden, R., Rosen, B. and Mannheim, C. H. 1977. Death and injury of Staphylococcus aureus during thermal treatment of milk. Can. J. Microbiol. 23(8):1034-1037. https://doi.org/10.1139/m77-153
  13. Foster, H. G. Jr., Lear, S. A. and Metzer, H. J. 1953. Time temperature studies on the inactivation of Brucella abortus Strain 2308 in milk. J. Milk. Food Tech. 16(3):116-120.
  14. Kessler, H. G. 1981. Food engineering and dairy technology. Verlag. A. Kessler.
  15. Labot, H., Hup. G. and Galesloot, T. E. Bacillus cereus in raw and pasteurized milk. III. The contamination of raw milk with B. cereus spores during its production. 1965. Neth. Milk. Dairy J. 19(3):191-221.
  16. Lang, O. W. 1935. Thermal processes for canned marine products. Univ. Calif. Publs. Publ: Hlth. 2(1): 1-182.
  17. Lee, I. C., Stevenson, K. E. and Harmon, L. G. 1977. Effect of beef broth protein on the thermal inactivation of staphylococcal enterotoxin B1. Appl. Environ. microbiol. 33:341-344.
  18. Gill, K. P. W., Bates, P. G. and Lander, K. P. 1981. The effect of pasteurization on the survival of Campylobacter species in milk. British Veterinary Journal 137 (6):578-584. https://doi.org/10.1016/S0007-1935(17)31534-8
  19. Heever, L. W., Van Der, K. W. and Katz, C. A. T. Brugge 1982.
  20. Humbel, J. Y., Denny, C. B. and Bohrer, C. W. 1975. Influence of pH on the heat inactivation of staphylococcal enterotoxin a as determined by monkey feeding and serological assay. Appl. Microbiol. 30:755-758.
  21. Mundell, D. H., Anselmo, E. R. and Wishnow, R. M. 1976. Factors influencing heat-labile Escherichia coli enterotoxin activity. Infect. Immun. 14:383-388.
  22. Miller, L. and Kandler, O. 1967. Temperaturund ZeitAbhängigkeit der Sporenabtötung im Bereich der Ultrahocherhitzung. Carl. Milchwissenschaft 22:686.
  23. Milyanovskii, A. G., Selidovkin, D. A. and Vasind, T. A. 1970. Heat resistance of Shigella sonnei in short time pasteurization procedures. Trudy, Vsesoyuznyi Nauchno- issledovatel'skii Institut Veterinarnoi Sanitarii. 37:89-96.
  24. Muray, T. Y. and Headlee, M. J. 1931. Thermal death point I. Spores of Clostridium tetani. J. Inf. Dis. 48: 436-456. https://doi.org/10.1093/infdis/48.5.436
  25. Michener, H. D., Thompson, P. A. and Lewis, J. C., 1959. Search for substances which reduce the heat resistance of bacterial spores. Appl. Microbiol. 7:166-173.
  26. Nevot, A., Lafont, P. and Lafont, J. 1960. Pasteurization of milk and destruction of Shigella. J. Ann. Inst. Pasteur. 98(2):306-309.
  27. Nichols, A. A. 1940. 264. The effect of variations in the fat percentage and in the reaction (pH) of milk media on the heat resistance of certain milk bacteria. J. Dairy Res. 11:274-291. https://doi.org/10.1017/S0022029900003290
  28. Obrien, R. T., Titus, D. S., Delvin, K. A., Stumbo, C. R. and Lewis, J. C. 1956. Antibiotics in food preservation. 2. Studies on the influence of subtilin and nisin on the thermal resistance of food spoilage bacteria. Food Technol. 10:352-355.
  29. Olson, J. C., Macy, H. and Halvorson, H. O. 1952. Thermal death-time studies of coliform bacteria in milk. Tech. Bull Minn. Agri Exp. Sta 202. 23.
  30. Papavassiliou, J. 1957. Coli aerogenes bacteria of pasteurized milks, with special reference to pathogenic serotypes of Escherichia coli. Appl. Bacteriol. 20(1): 91-94. https://doi.org/10.1111/j.1365-2672.1957.tb04524.x
  31. Potel, J. 1953. Aethiologie der Granulomatosis Infantiseptica. Wiss. Z. Univ. Halle. 3:341-364.
  32. Rajkowski, K. T. and Mikolajcik, E. M. 1987. Characteristics of selected strains of Bacillus cereus. J. Food. protection. 50(3):199-205. https://doi.org/10.4315/0362-028X-50.3.199
  33. Read, R. B., Bradshaw, J. G., Dickerson, R.W. and Peeler, J. T. 1968. Thermal resistance of salmonellae isolated from dry milk. Appli. Microbiol 16:998-1001.
  34. Sommer. E. W. 1930. Heat resistance of the spores of Clostridium botulinum. J. Inf. Dis. 46:85-114. https://doi.org/10.1093/infdis/46.2.85
  35. Sobernheim, G. and Mundel, O. 1938. Grundsätzliches zur Technik der Sterilisationsprüfung. Medical Microbiology and Immunology 121(2):90-112.
  36. Sugiyama, H. 1951. Studies on factors affecting the heat resistance spores of Clostridium botulinum. J. Bact. 62:81.
  37. Waterman, S. C. 1982. The heat sensitivity of Campylobacter jejuni in milk. J. Hyg. Camb. 88:529-533. https://doi.org/10.1017/S0022172400070388
  38. Wilkinson, G. and Davies, F. L. 1973. Germination of spores of Bacillus cereus in milk and milk dialysates: Effect of heat treatment. J. Appli. Bacteriol. 36(3): 485-496. https://doi.org/10.1111/j.1365-2672.1973.tb04131.x
  39. Weiss, H. 1921. The heat resistance of spores with special reference to the spores of B. botulinus. J. Infect. Dis. 28(1):70-92. https://doi.org/10.1093/infdis/28.1.70
  40. Williams, C. C., Merrill, C. M. and Cameron, E. J. 1937. Apparatus for determination of spore destruction rates. Food Res. 2(4):69-375.
  41. Williams, O. B. and Reed, J. M. 1942. The significance of the incubation temperature of recovery cultures in determining spore resistance to heat. J. Inf. Disease 71:225-227. https://doi.org/10.1093/infdis/71.3.225
  42. Xezones, H. and Hutechings, I. J. 1965. Thermal resistance of Clostridium botulinum (62A) spores as affected by fundamental food constituents. Food Technol. 19(6):1003.
  43. Parker, M. T. 1983. Topley and Wilson's Principles of Bacteriology, Virology and immunity edward arnold.
  44. McKinney, J. D., Cavanagh, G. C., Bell, J. T., Hoversland, A. S., Nelson, D. M., Pearson, J. and Selkirk, R. J. 1973. Effects of ammoniation on aflatoxins in rations fed lactating cows. J Am Oil Chem Soc. 50(3): 79-84. https://doi.org/10.1007/BF02671108
  45. Purchase, I. F. H., Steyn, M., Rinsma, R. and Tustin, R. C. 1972. Reduction of the aflatoxin M content of milk by processing. Food Cosmeti. Toxicol. 10(3):383-387. https://doi.org/10.1016/S0015-6264(72)80256-6

Cited by

  1. Erratum to: 우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과 vol.37, pp.1, 2017, https://doi.org/10.22424/jmsb.2019.37.1.82