• Title/Summary/Keyword: microbial consortia

Search Result 30, Processing Time 0.025 seconds

Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery

  • Al-Bahry, Saif N.;Elsahfie, Abdulkader E.;Al-Wahaibi, Yahya M.;Al-Bimani, Ali S.;Joshi, Sanket J.;Al-Maaini, Ratiba A.;Al-Alawai, Wafa J.;Sugai, Yuichi;Al-Mandhari, Mussalam
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2013
  • Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

Degradation of Phenolic Resin, Resole by Microbial Consortia (미생물 컨소시엄에 의한 페놀수지 Resole의 분해)

  • 오계헌;최원식
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.220-222
    • /
    • 1998
  • Three microbial consortia were screened for their ability to degrade phenolic resin, resole as a sole carbon source. These microbial consortia were derived from soil samples collected from a phenolic resin manufacturing plant site. Among the consortia, the test consortium, designated as MS2, displayed approximately 70% degradation of the substrate, 100 mg of resole per liter, within the fist twelve days of incubation but the degradation was inhibited. During the incubation period, pH was decreased from 7.0 to 2.7, and the resole degradation became inhibited under the conditions. UV-scans of spent culture showed that the wavelength of maximum absorption was 261 nm for resole.

  • PDF

Analyzing the Effect of Microbial Consortia Fermentation on the Quality of HnB by Untargeted Metabolomics

  • Ling Zou;Hong Zhang;Zhonghua Liu;Jianfeng Sun;Yang Hu;Yishu Ding;Xinwei Ji;Zhenfei Yang;Qi Zhang;Binbin Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1890-1897
    • /
    • 2024
  • Fermentation has been identified as an effective strategy to alter the chemical makeup of tobacco, thereby enhancing its quality. The deliberate introduction of microorganisms can hasten the fermentation process. In this research, microbial consortia harvested from the tobacco surface were utilized to enhance the tobacco quality. This enhancement also elevated several sensory attributes of HnB cigarettes, such as aroma richness, moisture, strength, and reduced irritation, achieving a sensory quality rating of 84.5. This marks a notable improvement compared to the 82 rating of the original, unfermented cigarettes. Untargeted metabolomics analysis revealed a decrease in total polyphenols and unsaturated fatty acids, while the levels of polyacids, alcohols, ketones, furans, and other compounds increased in the fermented tobacco. Additionally, KEGG pathway enrichment analysis indicated that the enhancement in tobacco quality through microbial consortia fermentation is linked to various biological pathways, with pathways related to fatty acid and amino acid degradation playing pivotal roles. The findings of this study will serve as a reference for the commercial production of HnB cigarettes, and the elucidated mechanism offers a theoretical basis for exploring microbial fermentation as a means to improve tobacco quality.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

A Field Study on the Enhancement of Landfarming Performance Using Oil-degradable Microbes Adapted to Various Temperature Range (생장 온도 범위별 최적의 유류분해 미생물을 이용한 토양경작 정화기술의 효율성 제고에 관한 현장 적용성 연구)

  • Yu, Jae-Bong;Kim, Jeong-Ho;Kim, Guk-Jin;Oh, Seung-Taek;Lee, Cheol-Hyo;Park, I-Kyong;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.10-17
    • /
    • 2009
  • Bioremediation has been applied as a proven technology in remediation of TPH contaminated soil. However, the efficiency of biodegradation is dependent on temperature as microbial activity is depressed at lower temperature ranges ($30^{\circ}C{\sim}80^{\circ}C$). The objective of this study was to develop microbes with enhanced activities at the stated temperature conditions and to evaluate the remediation effectiveness of these microbes in TPH contaminated soil. Experiments were conducted to isolate hydrocarbon degradable microbial consortia cultured under different temperature conditions. It was found that there were 5 strains of mesophilic ($30^{\circ}C$) and 3 strains of psychrophilic ($80^{\circ}C$) microbes. The TPH concentration was reduced from 4,044 mg/kg to 1,084 mg/kg, (73.2%) in 10 days by using mesophilic microbial consortia and from 5,427 mg/kg to 1,756 (67.6%) in 50 days with psychrophilic microbial consortia in laboratory cultures under controlled conditions. This rate determination excluded physical degradation such as venting and dilution. A field study was then performed to examine the feasibility of applying these microbes in the land-farming process. In this case, 87.1% of the 2,560 mg/kg TPH contaminated soil was degraded in 56 days. The biodegradation rate coefficient (k) was $0.0374\;day^{-1}$. Findings of this study provide viable options for applying microbes for bioremediation of TPH in lower temperature conditions.

Anaerobic Degradation of Aromatic Compounds by Microorganisms in Paddy Field

  • Katayama, A.;Yoshida, N.;Shibata, A.;Baba, D.;Yang, S.;Li, Z.;Kim, H.;Zhang, C.;Suzuki, D.
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.128-135
    • /
    • 2011
  • Consortia demonstrated the high capacities of anaerobic degradation of various aromatic compounds, which were successfully enriched from gley paddy soils under different conditions. Phenol and cresol was decomposed anaerobically using nitrate, ferric oxide or sulfate as electron acceptors. Biphenyl was degraded to $CO_2$, especially without addition of external electron acceptor. Alkylphenols with middle length of alkyl chain, were co-metaboliocally degraded with the presence of hydroxylbenzoate as the co-substrate under nitrate reducing conditions. The microorganisms responsible for the anaerobic co-metabolism was Thauera sp. Reductive dechlorination activity was also observed for polychlorophenols, fthalide, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins with the presence of lactate, formate or $H_2$ as electron donor. The fthalide dechlorinator was classified as Dehalobacter sp. Coupling of two physiologically-distinct anaerobic consortia, aromatic ring degrader and reductive dechlorinator, resulted in the mineralization of pentachlorophenol under anaerobic conditions. These results suggested that gley paddy soils harbored anaerobic microbial community with versatile capacity degrading aromatic compounds under anaerobic conditions.

  • PDF

Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor

  • Wonjung, Song;Chehyeun, Kim;Jiwon, Han;Jihoon, Lee;Zikang, Jiang;Jihyang, Kweon
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • Biofilms significantly affect the performance of wastewater treatment processes in which biodegradability of numerous microorganisms are actively involved, and various technologies have been applied to secure microbial biofilms. Understanding changes in biofilm characteristics by regulating expression of signaling molecules is important to control and regulate biofilms in membrane bioreactor, i.e., biofouling. This study investigated effects of addition of acyl-homoserine lactones (AHL) as a controllable factor for the microbial signaling system on biofilm formation of Pseudomonas aeruginosa PAO1 and multiple strains in membrane bioreactor. The addition of three AHL, i.e., C4-, C6-, and C8-HSL, at a concentration of 200 ㎍/L, enhanced the formation of the PAO1 biofilm and the degree of increases in the biofilm formation of PAO1 were 70.2%, 76.6%, and 72.9%, respectively. The improvement of biofilm formation of individual strains by C4-HSL was an average of 68%, and the microbial consortia increased by approximately 52.1% in the presence of 200 ㎍/L C4-HSL. CLSM images showed that more bacterial cells were present on the membrane surface after the AHL application. In the COMSTAT results, biomass and thickness were increased up to 2.2 times (PAO1) and 1.6 times (multi-strains) by C4-HSL. This study clearly showed that biofilm formation was increased by the application of AHL to individual strain groups, including PAO1 and microbial consortia, and significant increases were observed when 50 or 100 ㎍/L AHL was administered. This suggests that AHL application can improve the biofilm formation of microorganisms, which could yield an enhancement in efficiency of biofilm control, such as in various biofilm reactors including membrane bioreactor and bioflocculent systems in water/wastewater treatment processes.

Brief Review on the Microbial Biodegradation of Asphaltenes (아스팔텐의 미생물 분해 연구동향)

  • Kyeongseok Oh;Jong-Beom Lee;Yu-Jin Kim;Joo-Il Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.27-35
    • /
    • 2024
  • It was known that crude oil can be mainly divided into saturates, aromatics, resins, and asphaltenes. If microbial biodegradation of asphaltenes is effectively viable, additional oil production will be expected from depleted oil reservoir. Meanwhile, biodegradation can be applied to other aspects, such as the bioremediation of spilled oil. In this case, the biodegradation of asphaltenes also plays an important role. It has been already reported that asphaltenes are decomposed by bacterial consortia. However, the biodegradation mechanism of asphaltenes has not been clearly presented. The major reason is that the molecular structure of asphaltenes is complicated and is mainly in a aggregated form. In this paper, it was presumed that the biodegradation process of asphaltenes may follow the microbial oxidation mechanism of saturates and aromatics which are easier biodegradable than asphaltenes among the crude oil components. In other words, the biodegradation process was explained by serial stages; the contact between asphaltenes and bacteria in the presence of biosurfactants, and the decomposition of alkyl groups and fused-rings within the asphaltene structure.