A Field Study on the Enhancement of Landfarming Performance Using Oil-degradable Microbes Adapted to Various Temperature Range

생장 온도 범위별 최적의 유류분해 미생물을 이용한 토양경작 정화기술의 효율성 제고에 관한 현장 적용성 연구

  • Published : 2009.10.31

Abstract

Bioremediation has been applied as a proven technology in remediation of TPH contaminated soil. However, the efficiency of biodegradation is dependent on temperature as microbial activity is depressed at lower temperature ranges ($30^{\circ}C{\sim}80^{\circ}C$). The objective of this study was to develop microbes with enhanced activities at the stated temperature conditions and to evaluate the remediation effectiveness of these microbes in TPH contaminated soil. Experiments were conducted to isolate hydrocarbon degradable microbial consortia cultured under different temperature conditions. It was found that there were 5 strains of mesophilic ($30^{\circ}C$) and 3 strains of psychrophilic ($80^{\circ}C$) microbes. The TPH concentration was reduced from 4,044 mg/kg to 1,084 mg/kg, (73.2%) in 10 days by using mesophilic microbial consortia and from 5,427 mg/kg to 1,756 (67.6%) in 50 days with psychrophilic microbial consortia in laboratory cultures under controlled conditions. This rate determination excluded physical degradation such as venting and dilution. A field study was then performed to examine the feasibility of applying these microbes in the land-farming process. In this case, 87.1% of the 2,560 mg/kg TPH contaminated soil was degraded in 56 days. The biodegradation rate coefficient (k) was $0.0374\;day^{-1}$. Findings of this study provide viable options for applying microbes for bioremediation of TPH in lower temperature conditions.

생물학적 정화는 TPH로 오염된 지역을 정화하는 효과적인 방법으로 적용되고 있다. 하지만 미생물의 분해 활성이 적정온도 이하, 이상의 온도에서는 감소하기 때문에, 생분해 효율이 온도의 변화에 많은 영향을 받는 것으로 알려져 있다. 따라서 이번 연구의 목적은 유류 분해 효율이 우수한 중저온성 미생물을 분리하여 TPH로 오염된 지역에 적용할 때의 정화효율을 평가해 보는 것이다. 먼저 탄화수소 분해효율이 뛰어난 중온성($30^{\circ}C$)미생물 5종과 저온성($80^{\circ}C$) 미생물 3종의 consortia를 분리하였으며, 이들 미생물 consortia를 실험실내에서 유류로 오염된 토양에 적용해 본 결과, 중온성 미생물의 경우 초기 TPH 4,044 mg/kg이 10일 경과 후 1,084 mg/kg으로 73.2%, 저온성 미생물은 TPH 5,427 mg/kg이 50일 경과 후 1,756 mg/kg으로 67.6%의 처리효율을 보였다. 이 분해율은 휘발이나 희석에 의한 물리적 저감을 포함한다. 이후 분리된 미생물들을 토양 경작 현장에 적용해 본 결과, TPH 2,560 mg/kg의 오염이 56일 경과 후 87.1%의 제거율을 보였으며, 이때의 생분해 반응 속도상수는 $0.0374\;day^{-1}$이었다. 본 연구 결과는 저온, 중온 상태에서 미생물을 이용한 생물학적 정화가 더 다양하게 이용될 수 있는 가능성을 보여준 것으로 판단된다.

Keywords

References

  1. 김국진, 오승택, 이철효, 서상기, 강창환, 장윤영,2008, 유기물과 화학산화를 이용한 유류오염토양의 생물학적 정화효율 향상에 대한 연구, 한국지하수토양환경학회지, 13, 59-66
  2. 이상환, 김을영, 최호진, 2007, 중질유 오염토양의 생물학적 처리에 있어 amendment의 효과, 한국지하수토양환경학회지, 12, 54-63
  3. 환경부, 2007,오염토양 정화방법 가이드라인
  4. Caccamo, D., Gugliandolo, C., Stackebrandt, E., and Maugeri, T.L., 2000. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int. J Syst. Evol. Microbiol 50,2009-2012 https://doi.org/10.1099/00207713-50-6-2009
  5. EPA, 1996, Design conditions for landfarming, ETL-I110-1-176
  6. Kim, G.J., Lee, L.Y., Choi, D.K., Yoon, C.Y., and Park, Y.H., 1996, High Cell Density Cultivation of Pseudomonas putida BMOI Using Glucose, J Microbiol. Biotechnol. 6(3) 221-224
  7. Goodfellow, M., Mantio, GP., and Chun, J., 1997, Towards a practical species concept for cultivable bacteria, In The Units of Biodiversity - Species in Practice, London: Chapman and Hall, p. 25-59
  8. Jukes, T.H. and Cantor, C.R., 1969, Evolution of protein molecules, In Mammalian protein metabolism, New York: Academic Press, p. 21-132
  9. Lee, I.Y., Choi, E.S., Kim, G.J., Nam, S.W., Shin, Y.C., Chang, H.N., and Park, Y.H., 1994, Optimization of fed-batch fermentation for production of poly-$\beta$-hydroxybutyrate in Alcaligenes eutrophus. J Microbiol. Biotechnol. 4, 146-150
  10. Nakamura, L.K., 1993, DNA relatedness of Bacillus brevis Migula 1900 strains and proposal of Bacillus agri sp. nov., nom. rev., and Bacillus centrosporus sp. nov., nom. rev. Int. J Syst. Bacteriol. 43,20-25 https://doi.org/10.1099/00207713-43-1-20
  11. Shida, 0., Takagi, H., Kakowaki, K., and Komagata, K., 1996, Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J Syst. Bacteriol. 46, 939-946 https://doi.org/10.1099/00207713-46-4-939
  12. Stackebrandt, E. and Goebel, B.M., 1994, A place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846-849 https://doi.org/10.1099/00207713-44-4-846
  13. White, D., Sharp, R.J., and Priest, F.G, 1993, A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Leeuwenhoek 64,357-386 https://doi.org/10.1007/BF00873093
  14. Zarilla, K. and Perry, J.J., 1987, Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst. Appl. Microbiol. 9, 258-264 https://doi.org/10.1016/S0723-2020(87)80031-0
  15. Srienc, F., Arnold, B., and Bailey J.E., 1984, Characterization if intercellular accumulation of poly-$\beta$-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 flow cytometry, Biotechnol. Bioeng. 26, 982-987 https://doi.org/10.1002/bit.260260824