DOI QR코드

DOI QR Code

Brief Review on the Microbial Biodegradation of Asphaltenes

아스팔텐의 미생물 분해 연구동향

  • Kyeongseok Oh (Dept. of Chemical and Biological Engineering, Inha Technical College) ;
  • Jong-Beom Lee (Dept. of Chemical and Biological Engineering, Hanbat National University) ;
  • Yu-Jin Kim (Dept. of Chemical and Biological Engineering, Hanbat National University) ;
  • Joo-Il Park (Dept. of Chemical and Biological Engineering, Hanbat National University)
  • 오경석 (인하공업전문대학 화학생명공학과 ) ;
  • 이종범 (국립한밭대학교 화학생명공학과) ;
  • 김유진 (국립한밭대학교 화학생명공학과) ;
  • 박주일 (국립한밭대학교 화학생명공학과)
  • Received : 2024.04.19
  • Accepted : 2024.05.15
  • Published : 2024.06.30

Abstract

It was known that crude oil can be mainly divided into saturates, aromatics, resins, and asphaltenes. If microbial biodegradation of asphaltenes is effectively viable, additional oil production will be expected from depleted oil reservoir. Meanwhile, biodegradation can be applied to other aspects, such as the bioremediation of spilled oil. In this case, the biodegradation of asphaltenes also plays an important role. It has been already reported that asphaltenes are decomposed by bacterial consortia. However, the biodegradation mechanism of asphaltenes has not been clearly presented. The major reason is that the molecular structure of asphaltenes is complicated and is mainly in a aggregated form. In this paper, it was presumed that the biodegradation process of asphaltenes may follow the microbial oxidation mechanism of saturates and aromatics which are easier biodegradable than asphaltenes among the crude oil components. In other words, the biodegradation process was explained by serial stages; the contact between asphaltenes and bacteria in the presence of biosurfactants, and the decomposition of alkyl groups and fused-rings within the asphaltene structure.

원유성분은 크게 saturates, aromatics, resins, 그리고 asphaltenes(아스팔텐)으로 나눌 수 있다. 미생물을 이용한 아스팔텐의 생분해가 가능할 경우, 폐유전으로부터 추가적인 원유생산이 기대된다. 한편, 다른 용도인 유출유 처리를 위해서도 미생물을 이용한 유분의 생분해를 시도할 수 있는데, 이 경우에도 아스팔텐의 분해는 중요한 역할을 한다. 이미 아스팔텐이 박테리아 군체를 통해 생분해되는 특성은 보고되어 있다. 그러나, 아스팔텐의 분해 메카니즘에 대해서는 아직까지 뚜렷하게 제시되지는 않았다. 가장 큰 이유로는 아스팔텐의 분자구조가 복잡하고, 주로 엉김형태로 존재하기 때문이라 할 수 있다. 본 논문에서는 상대적으로 원유내 생분해가 유리한 saturates와 aromatics의 산화반응 메카니즘에 기초하여, 아스팔텐의 분해과정을 추정하였다. 즉, 아스팔텐은 생계면활성제에 의해 박테리아와 접촉하고, 아스팔텐 구조내의 알킬기의 분해, 그리고 접합고리의 분해로 이어지는 단계적 생분해 과정을 겪을 것으로 제시하였다.

Keywords

Acknowledgement

이 논문은 2023학년도 국립한밭대학교 대학회계 연구비를 지원받아 작성되었음.

References

  1. Oh, K., Ring, T. A., and Deo, M. D., "Asphaltene aggregation in organic solvents", Journal of Colloid and Interface Science, 271(1), pp. 212~219. (2004). 
  2. Oh, K., "Review on asphaltene architecture", Journal of the Korean Applied Science and Technology, 31(1), pp. 151~158. (2014). 
  3. Mullins, O. C., "The modified Yen model", Energy & Fuels, 24(4), pp. 2179~2207. (2010). 
  4. Sabbah, H., Morrow, A. L., Pomerantz, A. E., Mullins, O. C., Tan, X., Gray, M. R., and Zare, R. N., "Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds", Energy & Fuels, 24(6), pp. 3589~3594. (2010). 
  5. Nikolova, C., and Gutierrez, T., "Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: Current state of knowledge, technological advances and future perspectives", Frontiers in Microbiology, 10, pp. 481081. (2020). 
  6. Cui, Q. F., Sun, S. S., Luo, Y. J., Yu, L., and Zhang, Z. Z., "Comparison of in-situ and ex-situ microbial enhanced oil recovery by strain Pseudomonas aeruginosa WJ-1 in laboratory sand-pack columns", Petroleum Science and Technology, 35(21), pp. 2044~2050. (2017). 
  7. Van Hamme, J. D., Singh, A., and Ward, O. P., "Recent advances in petroleum microbiology", Microbiology and Molecular Biology Reviews, 67(4), pp. 503~549. (2003). 
  8. Oh, K., "Brief Review on Microbial Enhanced Oil Recovery", Journal of the Korean Applied Science and Technology, 38(4), pp. 1010~1019. (2021). 
  9. Hidalgo, K. J., Sierra-Garcia, I. N., Dellagnezze, B. M., and De Oliveira, V. M., "Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain", Frontiers in Microbiology, 11, pp. 561506. (2020). 
  10. Olajire, A. A., and Essien, J. P., "Aerobic degradation of petroleum components by microbial consortia", Journal of Petroleum & Environmental Biotechnology, 5(5), pp. 1. (2014). 
  11. Nzila, A., and Musa, M. M., "Current knowledge and future challenges on bacterial degradation of the highly complex petroleum products asphaltenes and resins", Frontiers in Environmental Science, 9, pp. 779644. (2021). 
  12. Charrie-Duhaut, A., Lemoine, S., Adam, P., Connan, J., and Albrecht, P., "Abiotic oxidation of petroleum bitumens under natural conditions", Organic Geochemistry, 31(10), pp. 977~1003. (2000). 
  13. Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V., and Kodali, V. P., "Role of biosurfactants in bioremediation of oil pollution-a review", Petroleum, 4(3), pp. 241~249. (2018). 
  14. Tavassoli, T., Mousavi, S. M., Shojaosadati, S. A., and Salehizadeh, H., "Asphaltene biodegradation using microorganisms isolated from oil samples", Fuel, 93, pp. 142~148. (2012). 
  15. Jahromi, H., Fazaelipoor, M. H., Ayatollahi, S., and Niazi, A., "Asphaltenes biodegradation under shaking and static conditions", Fuel, 117, pp. 230~235. (2014). 
  16. Gao, H., Zhang, J., Lai, H., and Xue, Q., "Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil", International Biodeterioration & Biodegradation, 122, pp. 12~22. (2017). 
  17. Iraji, S., and Ayatollahi, S., "Experimental investigation on asphaltene biodegradability using microorganism: Cell surface properties' approach", Journal of Petroleum Exploration and Production Technology, 9(2), pp. 1413~1422. (2019). 
  18. Navas-Caceres, O. D., Parada, M., and Zafra, G., "Development of a highly tolerant bacterial consortium for asphaltene biodegradation in soils", Environmental Science and Pollution Research, 30(59), pp. 123439~123451. (2023). 
  19. Das, S., Das, N., Choure, K., and Pandey, P., "Biodegradation of asphaltene by lipopeptide-biosurfactant producing hydrocarbonoclastic, crude oil degrading Bacillus spp", Bioresource Technology, 382, p. 129198. (2023). 
  20. Medic, A., Ljesevic, M., Inui, H., Beskoski, V., Kojic, I., Stojanovic, K., and Karadzic, I., "Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity", RSC advances, 10(24), pp. 14060~14070. (2020). 
  21. Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H. A., Zhang, X., & Ma, F., "Principles of microbial degradation of petroleum hydrocarbons in the environment", The Egyptian Journal of Aquatic Research, 44(2), pp. 71~76. (2018). 
  22. Olajire, A. A., and Essien, J. P., "Aerobic degradation of petroleum components by microbial consortia", Journal of Petroleum & Environmental Biotechnology, 5(5), pp. 1. (2014). 
  23. Bressler, D. C., and Gray, M. R., "Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport", International Journal of Chemical Reactor Engineering, 1(1), pp. 20121003. (2003). 
  24. Parthipan, P., Preetham, E., Machuca, L. L., Rahman, P. K., Murugan, K., and Rajasekar, A., "Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1", Frontiers in Microbiology, 8, pp. 237675. (2017). 
  25. Li, X., Li, H., and Qu, C., "A review of the mechanism of microbial degradation of petroleum pollution", In IOP conference series: Materials science and engineering, 484(1). pp. 012060. (2019). 
  26. Wang, R., Li, X., Li, J., Dai, W., and Lu an, Y., "Bacterial Interactions with Nanoplastics and the Environmental Effects They Cause", Fermentation, 9(11), pp. 939. (2023).