• Title/Summary/Keyword: micro-modeling

Search Result 436, Processing Time 0.028 seconds

Predicted Performance of the Integrated Artificial Lighting System in Relation to Daylight Levels (채광시스템과 인공조명설비의 통합기술 및 성능평가연구)

  • Kim, G.;Kim, J.T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.47-56
    • /
    • 2002
  • The office is an excellent candidate for implementing daylighting techniques because of the relatively high electric lighting power densities and long daytime use pattern. The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an office interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed for both a totally open-plan office interior and a partitioned office. A lighting design and analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting fixture to meet the designed lighting level and calculates unit power density, which translates the demanded amount of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky are evaluated by a computer software, ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year. A 25 % of electric energy for cooling may be saved by dimming and turning off the luminaires in the perimeter zones.

Study on the Property of Sintered Silver Clay for Rapid Modeling (신속 조형용 은점토 소결체의 물성 연구)

  • Kim, Jun-Hwan;Kim, Keum-Jong;Kim, Myung-Ro;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1548-1554
    • /
    • 2008
  • The market of silver precious metal clay (PMC) is promising as its application for agile metal craft. The property of suitable hardness and shrinkage as well as environment-safe is strictly required as people make the final product with bare hands. We propose a silver PMC with new organic binder made of palm oil, glycolic acid and water. Then we prepared disk specimen of our proposed PMC and well-known commercial PMC. We investigated the hardness, weight change, linear shrinkage, density and micro structure evolution with sintering temperature of $700{\sim}900^{\circ}C$ ($50^{\circ}C$ gap) for 15minutes. We confirm our proposed PMC has suitable property for craft product comparable for commercial PMC, and the optimum sintering condition is $850^{\circ}C$-15minutes for metal craft application.

A study on machining method about molybdenum alloy micro fixing part for TEM precision specimen. (TEM 정밀 시편 제작용 몰리브덴 합금 미세 고정 부품의 제작을 위한 절삭 가공 방법에 관한 연구)

  • Kim, Ki-Beom;Lee, Chang-Woo;Lee, Hae-Jin;Ham, Min-Ji;Kim, Gun-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • In these days, increase requirement of TEM (Transmission Electro Microscope) in not only scientific field but also industrial field. Because TEM can measure inner-structure of specimen a variety of materials like metal, bio. etc. When use TEM, specimen should be thin about 50nm. So making for thin specimen, use Ion milling device that include specimen holder. The holder generally made of Aluminium Aluminium holder is worn away easily. For this reason, using time of ion milling with aluminum holder is too short. To solve the problem, we replace aluminium holer to molybdenum alloy holder. In this paper, we design molybdenum alloy holer for CAM and modify CAD modeling for effective machining process. So we array a specimen 3 by 4 and setup orientation for one-shot machining process. Next we make a CAM program for machining. we making a decision two machining strategy that chose condition of tool-path method, step-down, step-over. etc. And then conduct machining using CNC milling machining center. To make clear difference between case.1 and case.2, we fixed machining conditions like feed-rate, main spindle rpm, etc. After machining, we confirm the condition of workpiece and analysis the problems case by case. Finally, case.2 work piece that superior than case.1 cutting with WEDM because that method can not ant mechanical effect on workpiece.

Computer Simulation for X-ray Breast Elastography (X선 유방 탄성 영상을 위한 컴퓨터 모의 실험)

  • Kim, Hyo-Geun;Aowlad Hossain, A.B.M.;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • Breast cancer is the most frequently appearing cancer in women, these days. To reduce mortality of breast cancer, periodic check-up is strongly recommended. X-ray mammography is one of powerful diagnostic imaging systems to detect 50~100 um micro-calcification which is the early sign of breast cancer. Although x-ray mammography has very high spatial resolution, it is not easy yet to distinguish cancerous tissue from normal tissues in mammograms and new tissue characterizing methods are required. Recently ultrasound elastography technique has been developed, which uses the phenomenon that cancerous tissue is harder than normal tissues. However its spatial resolution is not enough to detect breast cancer. In order to develop a new elastography system with high resolution we are developing x-ray elasticity imaging technique. It uses the small differences of tissue positions with and without external breast compression and requires an algorithm to detect tissue displacement. In this paper, computer simulation is done for preliminary study of x-ray elasticity imaging. First, 3D x-ray breast phantom for modeling woman's breast is created and its elastic model for FEM (finite element method) is generated. After then, FEM experiment is performed under the compression of the breast phantom. Using the obtained displacement data, 3D x-ray phantom is deformed and the final mammogram under the compression is generated. The simulation result shows the feasibility of x-ray elasticity imaging. We think that this preliminary study is helpful for developing and verifying a new algorithm of x-ray elasticity imaging.

Low Fetal Weight is Directly Caused by Sequestration of Parasites and Indirectly by IL-17 and IL-10 Imbalance in the Placenta of Pregnant Mice with Malaria

  • Fitri, Loeki Enggar;Sardjono, Teguh Wahju;Rahmah, Zainabur;Siswanto, Budi;Handono, Kusworini;Dachlan, Yoes Prijatna
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • The sequestration of infected erythrocytes in the placenta can activate the syncytiotrophoblast to release cytokines that affect the micro-environment and influence the delivery of nutrients and oxygen to fetus. The high level of IL-10 has been reported in the intervillous space and could prevent the pathological effects. There is still no data of Th17 involvement in the pathogenesis of placental malaria. This study was conducted to reveal the influence of placental IL-17 and IL-10 levels on fetal weights in malaria placenta. Seventeen pregnant BALB/C mice were divided into control (8 pregnant mice) and treatment group (9 pregnant mice infected by Plasmodium berghei). Placental specimens stained with hematoxylin and eosin were examined to determine the level of cytoadherence by counting the infected erythrocytes in the intervillous space of placenta. Levels of IL-17 and IL-10 in the placenta were measured using ELISA. All fetuses were weighed by analytical balance. Statistical analysis using Structural Equation Modeling showed that cytoadherence caused an increased level of placental IL-17 and a decreased level of placental IL-10. Cytoadherence also caused low fetal weight. The increased level of placental IL-17 caused low fetal weight, and interestingly low fetal weight was caused by a decrease of placental IL-10. It can be concluded that low fetal weight in placental malaria is directly caused by sequestration of the parasites and indirectly by the local imbalance of IL-17 and IL-10 levels.

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

Evaluation of Effect of Plastic Gradient on the Behavior of Single Grain inside Polycrystalline Solids (소성 구배의 영향을 고려한 다결정 고체 내부의 결정 거동 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • Plastic gradient from geometrically necessary dislocation(GND) can strongly affect micro-scale plastic behavior of polycrystalline solids. In this research, mechanical behavior of polycrystalline solid is investigated using the finite element method incorporating plastic gradient from GND effect. Gradient hardness coefficient and material length parameter are used to evaluate the effect of the plastic gradient on the behavior of materials. Sensitivity of the modeling parameters on the plastic gradient from GND is presented and effects of plastic gradient and material parameters on the behavior of single crystal inside a polycrystalline aggregate are investigated. It is confirmed that the plastic gradient from GND amplifies hardening response of polycrystals and affects single crystal behavior embedded in polycrystalline solids.

CANVAS: A Cloud-based Research Data Analytics Environment and System

  • Kim, Seongchan;Song, Sa-kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.117-124
    • /
    • 2021
  • In this paper, we propose CANVAS (Creative ANalytics enVironment And System), an analytics system of the National Research Data Platform (DataON). CANVAS is a personalized analytics cloud service for researchers who need computing resources and tools for research data analysis. CANVAS is designed in consideration of scalability based on micro-services architecture and was built on top of open-source software such as eGovernment Standard framework (Spring framework), Kubernetes, and JupyterLab. The built system provides personalized analytics environments to multiple users, enabling high-speed and large-capacity analysis by utilizing high-performance cloud infrastructure (CPU/GPU). More specifically, modeling and processing data is possible in JupyterLab or GUI workflow environment. Since CANVAS shares data with DataON, the research data registered by users or downloaded data can be directly processed in the CANVAS. As a result, CANVAS enhances the convenience of data analysis for users in DataON and contributes to the sharing and utilization of research data.

A Study of Microscopic Energy Simulation based on BIM - Illuminance & Energy Analysis of Illuminance Sensor Lighting (BIM 기반의 미시적 에너지 시뮬레이션에 관한 연구 -조도센서등의 조도 및 에너지 분석을 중심으로)

  • Baek, Ji-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.384-390
    • /
    • 2019
  • The importance of architecture design focused on eco-friendly and low energy continues to grow. In addition, the energy conservation design is required from a micro-perspective. Energy simulations based on BIM have attracted recent attention because of the high efficiency. On the other hand, the parameters concerned with microscopic energy are not included in BIM data. This study examined the necessity of the sensor-light parameter using a simulation of illuminance sensor light. In this study, illuminance sensors were installed into the BIM data and the operating schedule data of sensor light were generated by an illuminance simulation. The schedule data was then inputted into the simulation application, and the reduction ratio of power consumption was verified by the simulation. According to research, the power consumption and thermal load decreased by more than 20 %. Therefore, it is necessary to supplement the sensor-light parameter into BIM data for microscopic energy conservation design. This study was not confined to checking whether sensor-light parameter is necessary or not, but to ascertaining the necessary of applying a microscopic factor to generate BIM data.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.