DOI QR코드

DOI QR Code

Evaluation of Effect of Plastic Gradient on the Behavior of Single Grain inside Polycrystalline Solids

소성 구배의 영향을 고려한 다결정 고체 내부의 결정 거동 분석

  • 정상엽 (연세대학교 토목환경공학과) ;
  • 한동석 (연세대학교 토목환경공학과)
  • Received : 2011.01.20
  • Accepted : 2011.03.18
  • Published : 2011.04.30

Abstract

Plastic gradient from geometrically necessary dislocation(GND) can strongly affect micro-scale plastic behavior of polycrystalline solids. In this research, mechanical behavior of polycrystalline solid is investigated using the finite element method incorporating plastic gradient from GND effect. Gradient hardness coefficient and material length parameter are used to evaluate the effect of the plastic gradient on the behavior of materials. Sensitivity of the modeling parameters on the plastic gradient from GND is presented and effects of plastic gradient and material parameters on the behavior of single crystal inside a polycrystalline aggregate are investigated. It is confirmed that the plastic gradient from GND amplifies hardening response of polycrystals and affects single crystal behavior embedded in polycrystalline solids.

마이크로 스케일에서 다결정 재료의 소성 거동을 살펴볼 때, 결정의 geometrically necessary dislocation(GND) 효과에 의한 소성 구배(plastic gradient)를 고려하는 것은 재료의 소성 거동에 큰 영향을 줄 수 있다. 이러한 영향을 확인하기 위하여, 본 연구에서는 소성 구배의 영향을 고려한 다결정 고체(polycrystalline solids)의 거동을 유한요소해석을 이용하여 살펴보았다. 소성 구배의 영향을 살펴보기 위해 구배 경화 계수(gradient hardness coefficient)와 먼 거리 변형률에 대한 재료 길이 변수 (material length parameter)가 사용되었다. 재료 길이 변수에 의한 영향을 확인하기 위해, 재료 길이 변수의 차이에 따른 다결정 고체의 거동을 분석하였다. 또한 소성 구배 효과의 고려 및 재료 길이 변수에 따른 다결정 고체 내부에 위치한 단결정이 받는 영향을 살펴보았다. 재료 길이 변수에 따라 결정이 받는 영향을 비교하여, GND에 의한 다결정 고체 거동의 영향을 확인하였다.

Keywords

References

  1. 정상엽, 한동석 (2011) GND 효과에 의한 소성 구배의 다결정 고체 거동에 대한 영향, 한국전산구조공학회 논문집, 한국전산구조공학회, 2011년 4월호 게재 예정.
  2. Acharya, A. and Beaudoin, A.J. (2000) Grain-size effect in viscoplastic polycrystals at moderate strains, Journal of the Mechanics and Physics of Solids, 48, pp. 2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2
  3. Acharya, A. (2001) A model of crystal plasticity based on the theory of continuously distributed dislocations, Journal of the Mechanics and Physics of Solids, 49, pp. 761-784. https://doi.org/10.1016/S0022-5096(00)00060-0
  4. Ashby, M.F. (1970) The deformation of plastically non-homogeneous materials, Philosophical Magazine, 21, pp. 399-424. https://doi.org/10.1080/14786437008238426
  5. Cullity, B.D. and Stock, S.R. (2001) Elements of X-ray diffraction, Prentice Hall, New Jersey, p. 677.
  6. Dumoulin, S. and Taboulor, L. (2005) Experimental data on aluminium single crystals behaviour, Proceedings of the Institution of Mechanical Engineers - Part C: Mechanical Engineering Science, 219, pp.1159-1167.
  7. Evers, L.P., Parks, D.M., Brekelmans, W.A.M. and Geers, M.G.D. (2002) Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, Journal of the Mechanics and Physics of Solids, 50, pp. 2403-2424. https://doi.org/10.1016/S0022-5096(02)00032-7
  8. Gerken, J.M. and Dawson, P.R. (2007) Bending of a single crystal thin foil of material with slip gradient effects, Modeling and Simulation in Materials Science and Engineering, 15, pp. 799-822. https://doi.org/10.1088/0965-0393/15/7/007
  9. Gerken, J.M. and Dawson, P.R. (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients, Journal of the Mechanics and Physics of Solids, 56, pp. 1651-1672. https://doi.org/10.1016/j.jmps.2007.07.012
  10. Gerken, J.M. and Dawson, P.R. (2008) A finite element formulation to solve a non-local constitutive model with stresses and strains due to slip gradients, Computer methods in applied mechanics and engineering, 197, pp. 1343-1361. https://doi.org/10.1016/j.cma.2007.11.003
  11. Gudmundson, P. (2004) A unified treatment of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 52, pp. 1379-1406. https://doi.org/10.1016/j.jmps.2003.11.002
  12. Gurtin, M.E. (2002) Onthe plasticity of single crystals: free energy, microforces, plastic-strain gradients, Journal of the Mechanics and Physics of Solids, 48, pp. 989-1036.
  13. Hall, E.O. (1951) The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society, 64, pp. 747-753.
  14. Han, C.S., Roters, F. and Raabe, D. (2006) On strain gradients and size-dependent hardening descriptions in crystal plasticity frameworks, Metals and Materials International, 12, pp. 407-411. https://doi.org/10.1007/BF03027707
  15. Hartley, C.S. (2003) A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory, Philosophical Magazine, 83, pp. 3783-3808. https://doi.org/10.1080/14786430310001599522
  16. Petch, N.J. (1953) Cleavage strength of polycrystals, International Iron and Steel Institute, 174, pp. 25-28.