• Title/Summary/Keyword: micro-modeling

Search Result 438, Processing Time 0.024 seconds

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.

Modeling Microstructural Changes in Steel Wire Drawing (펄라이트 강 선재 인발에서 미세조직 변화 모델링)

  • Yoon, S.H.;Lee, Y.S.;Nam, W.J.;Park, K.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.271-272
    • /
    • 2008
  • This paper is concerned with the prediction of micro structural changes of pearlitic steel wire during clod drawing. The most important microstructural aspects are ferrite/cementite interlamellar spacing, cementite shape and thickness, since those are crucial factors to determine the mechanical strength of pearlitic steel. In this study, a couple of new algorithms to predict the above microstructural changes are developed based on the deformation histories of macro material points obtained from finite element simulations for pearlitic steel wire drawing. Some predictions are shown. The special features of the algorithms developed in this study are discussed in details.

  • PDF

3DOF Endoscope with Spring Backbone and Wires (스프링 백본과 와이어를 이용한 3자유도 내시경)

  • Choi, Dong-Geol;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.203-211
    • /
    • 2008
  • This work proposes structure of spring backbone micro endoscope. For effective surgery in narrow and limited space, many manipulators are developing that different to existed structure. This device can move like elephant nose or snake unlike the existing robots. For this motion, a mechanism that uses spring backbone and wires has been developed. The new type endoscope that has Z axis motion for spring structure, therefore it has 3 degree of freedom, two rotations and one linear motion. And new kinematics for backbone structure is proposed using simple geographic analysis. The Jacobian and stiffness modeling are also derived. Exact actuator sizing is determined using stiffness model. Finally, the proposed kinematics are verified by simulation and experiments.

  • PDF

Apparel design evaluation process from users' perceived values

  • Kim, Jungsook
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.1
    • /
    • pp.158-166
    • /
    • 2014
  • Apparel design is an economic activity to create values for users over the value chain of a product. In this paper, the contribution of apparel design is defined as the enhancement of users' perceived values by improving users' experience of products. In this context, the value of a product corresponds to compensation for experience or a promise for experience of a product. Experience can be sensory or psychological benefits to users. To evaluate the value of apparel design, the researcher identified and analyzed the apparel design parameters affecting users' experience and benefits of products such as macro-, micro-environmental factors, value chain factors, apparel designer factors, and user factors. For an analytical modeling of the values of apparel design, this paper introduces the concept of a utility function from economics. In economics, utility is a measure of desirability or satisfaction that can be correlative to need or desire. The measure of value can be found in the price which a user is willing to pay for the fulfillment or satisfaction of need or desire via the experience of a product.

Characterization of Stiffness Coefficients of Silicon Versus Temperature using "Poisson's Rati" Measurements

  • Cho, Chun-Hyung;Cha, Ho-Young;Sung, Hyuk-Kee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.153-158
    • /
    • 2016
  • The elastic material constants, stiffness constants ($c_{11}$, $c_{12}$, and $c_{44}$), are three unique coefficients that establish the relation between stress and strain. Accurate knowledge of mechanical properties and the stiffness coefficients for silicon is required for design of Micro-Electro-Mechanical Systems (MEMS) devices for proper modeling of stress and strain in electronic packaging. In this work, the stiffness coefficients for silicon as a function of temperature from $-150^{\circ}C$ to $+25^{\circ}C$ have been extracted by using the experimental measurements of Poisson's ratio (${\nu}$) of silicon in several directions.

Tunnel Sonic Boom Analysis using monopole source modeling (홀극음원 모델링을 이용한 고속전철 터널 충격성 소음해석)

  • Jung W.T.;Yoon T.S.;Lee S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.427-432
    • /
    • 1999
  • When a high-speed train enters a tunnel, a compression wave is generated. This wave subsequently emerges from the exit portal of the tunnel, which causes an impulsive noise called 'Sonic boom' or 'micro-pressure wave'. In the present study, new method is presented for prediction of sonic boom noise, especially focusing on the effect of the nose shape of the train on the resultant noise. Acoustic theory for monopole source is used to represent a nose shape of the train in wave equation. Compression wave propagation in tunnel considering tunnel track condition and emission of sonic boom was calculated. The predicted compression waves and impulsive sound waves are compared with recent measurements, and show reasonable agreements.

  • PDF

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

Generation of Tool Paths for NC Machining of 3D Surfaces by Measurement Data (3차원 측정 곡면의 효율적인 NC 가공을 위한 공구 경로 생성)

  • 구영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.207-212
    • /
    • 1997
  • The purpose of this study is the development of CAM system which can cut and measure any shape by machining center and coordinate measuring machine. The overall goal of the CAM system is to achieve the CNC machining, from digitizing through to final cutting. The hardware of the system comprises PC and machining center, CMM. There are three steps in the CNC machining, (1) workpiece measuring on the CMM, (2) geometric modeling by the CAD system, (3) NC commands generation by the tool path compensated for tool nose radius. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF