• 제목/요약/키워드: micro powder injection molding $(\mu-PIM)$

검색결과 5건 처리시간 0.018초

Technical and Economical Comparison of Micro Powder Injection Molding

  • Atre, Sundar V.;Wu, Carl L.;Hwang, Chul-Jin;Zauner, Rudolf;Park, Seong-Jin;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.45-46
    • /
    • 2006
  • In recent years, micro powder injection molding $(\mu-PIM)$ is being explored as an economical fabrication method for microcomponents in microsystems technology (MST). Technical and economic comparison was performed for $\mu-PIM$ processes. Molding experiment and simulation during the filling process were performed to evaluate several different geometries and processing conditions. The influence of material parameters and process conditions on mold filling were examined as a function of features size using microchannels as an example. It was found that the heat conductivity and viscosity of feedstock, geometry and mold temperature were the most critical parameters for complete filling of micro features.

  • PDF

마이크로 분말사출성형에서 바인더 물성이 피드스탁 및 성형공정에 미치는 영향에 관한 연구 (A study on the effect of binder properties on feedstock and micro powder injection molding process)

  • 이원식;김용대
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.1-7
    • /
    • 2017
  • The fabrication process of micro pattern structure with high precision and high aspect ratio using powder injection molding (PIM) is developed. In the PIM process, the metal powder is mixed with the binder systems and the mixture is injected into the metal mold. The injection molded green parts are debinded and sintered to reach final shape and properties. In this method, the optimization of physical properties such as fluidity and strength of the binder system is essential for perfect filling the high aspect ratio micro-pattern. For this purpose, the correlation between the properties of the binder system and feedstock and ${\mu}-PIM$ process was investigated, and a binder system with low viscosity at low temperature(about $110^{\circ}C$) and high strength after cooling was investigated and applied. Employing this process, high precision parts with line type micro pattern structure which has pattern size $160{\mu}m$ and aspect ratio more than 2 can be manufactured.

마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구 (Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern)

  • 박치열;서찬열;김용대
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

마이크로 PIM용 Fe 마이크로-나노 복합분말 피드스톡 제조시 혼합거동과 미세구조 변화 (Mixing Behavior and Microstructural Development During Fabrication of Fe Micro-nano-powder Feedstock for Micro-PIM)

  • 유우경;이재성;고세현;이원식
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.630-638
    • /
    • 2010
  • The present investigation has been performed on the mixing behavior and microstructural development during fabrication of Fe micro-nano powder feedstock for a micro-powder injection molding process. The mixing experiment using a screw type blender system was conducted to measure the variations of torque and temperature during mixing of Fe powder-binder feedstock with progressive powder loading for various nano-powder compositions up to 25%. It was found that the torque and the temperature required in the mixing of feedstock increased proportionally with increasing cumulative powder loading. Such an increment was larger in the feedstock containing higher content of nano-powder at the same powder loading condition. However, the maximum value was obtained at the nano-powder composition of not 25% but 10%. It was owing to the 'roller bearing effect' of agglomerate type nano-powder acting as lubricant during mixing, consequently leading to the rearrangement of micro-nano powder in the feedstock. It is concluded that the improvement of packing density by rearrangement of nano-powders into interstices of micro-powders is responsible for the maximum powder loading of about 71 vol.% in the nano-powder composition of 25%.