• Title/Summary/Keyword: micro heater

Search Result 159, Processing Time 0.03 seconds

Fabrication and Characteristics of Micro Platform for Micro Gas Sensor with Low Power Consumption (마이크로 가스센서의 저전력 구동을 위한 마이크로 플랫폼의 제작과 특성)

  • Jang, Woong-Jin;Park, Kwang-Bum;Kim, In-Ho;Park, Soon-Sup;Park, Hyo-Derk;Lee, In-Kyu;Park, Joon-Shik
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.317-321
    • /
    • 2011
  • A Micro platform for micro gas sensor consisted of micro heater, insulator, and sensing electrode on 2 ${\mu}m$ thick $SiN_x$ membrane. Three types of micro platforms were designed and fabricated with membrane sizes. Total size of micro platform was 2.6 mm by 2.6 mm. Measured power consumptions were 28 mW, 28 mW, and 32.5 mW for Type 1, Type 2, and Type 3. At this moment, temperatures of membranes on the platforms were $295^{\circ}C$, $297^{\circ}C$, and $296^{\circ}C$, respectively. Fabricated micro platform considered appropriate to apply for low power consumption micro gas sensor. Micro gas sensors were prepared by the sequence that $SnO_2$ nanopowder pastes were dropped on membrane of Type 1 platforms, dried in oven, heat-treated with micro heaters in platforms. One of the micro gas sensors was tested for gas response to 1157 ppm, 578 ppm, and 231 ppm of methane and 1.68 ppm, 0.84 ppm, and 0.42 ppm of $NO_2$.

The Fabrication of Flow Sensors Using Pt Micro Heater (백금 미세발열체를 이용한 유량센서의 제작)

  • Noh, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.609-611
    • /
    • 1997
  • Pt thin films flow sensors were fabricated by using aluminum oxide films as medium layer and their characteristics were investigated after annealing at $600^{\circ}C$ for 60min. Aluminum oxide improved adhesion of Pt thin films to $SiO_2$ layer without any chemical reactions to Pt thin films under high annealing temperatures. Output voltages increased as gas flow rate and gas conductivity increased because heat loss of heater, which was integrated with a sensing resistor in the flow sensor, increased. Output voltage of flow sensor fabricated on membrane structure was 101mV at $O_2$ flow rate of 2000sccm, heating power of 0.8W while flow sensor fabricated on Si substrate without membrane had output voltage of 78mV under the same conditions.

  • PDF

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

On-orbit Thermal Control of MEMS Based Solid Thruster by Using Micro-igniter (MEMS 기반 고체 추력기의 마이크로 점화기를 이용한 궤도 열제어)

  • Ha, Heon-Woo;Kang, Soo-Jin;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.802-808
    • /
    • 2014
  • MEMS based solid propellant thruster researched for the purpose of an academic research will be verified at space environment through CubeSat program. For this, the temperature of the MEMS thruster should be within allowable operating temperature range by proper thermal control to prevent the ignition failure caused by ignition time delay and to guarantee the structural safety of the MEMS thruster in the low temperature. In this study, we proposed an effective thermal control strategy, that is to use micro-igniter as a heater and temperature sensor for active thermal control instead of using additional heater. The effectiveness of the strategy has been verified through on-orbit thermal analysis of CubeSats with MEMS thruster.

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

Fabrication and characteristics of micro-machined thermoelectric flow sensor (실리콘 미세 가공을 이용한 열전형 미소유량센서 제작 및 특성)

  • Lee, Young-Hwa;Roh, Sung-Cheoul;Na, Pil-Sun;Kim, Kook-Jin;Lee, Kwang-Chul;Choi, Yong-Moon;Park, Se-Il;Ihm, Young-Eon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • A thermoelectric flow sensor for small quantity of gas flow rate was fabricated using silicon wafer semiconductor process and bulk micromachining technology. Evanohm R alloy heater and chromel-constantan thermocouples were used as a generation heat unit and sensing parts, respectively. The heater and thermocouples are thermally isolated on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ laminated membrane. The characteristics of this sensor were observed in the flow rate range from 0.2 slm to 1.0 slm and the heater power from 0.72 mW to 5.63 mW. The results showed that the sensitivities $(({\partial}({\Delta}V)/{\partial}(\dot{q}));{\;}{\Delta}V$ : voltage difference, $\dot{q}$ : flow rate) were increased in accordance with heater power rise and decreasing of flow rate.

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube (수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF

An experimental study on heat transfer characteristics in a vertical micro-fin tube during evaporation process of carbon dioxide flowing upward (이산화탄소의 마이크로 핀관 내 상향유동 증발열전달 특성에 관한 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.247-251
    • /
    • 2007
  • Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical micro-fin tube have been investigated by experiment. Before a test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. The micro-fin tube with outer diameter of 5 mm and length of 1.44 m was selected as the test section. The test was conducted at mass fluxes of 318 to $530\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat fluxes of 15 to $30\;kW/m^2$. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are increased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase, and there was not much of influence of mass flux on the heat transfer coefficients.

  • PDF