• Title/Summary/Keyword: micro/nanoparticles

Search Result 132, Processing Time 0.031 seconds

Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1573-1578
    • /
    • 2007
  • An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition

  • Kazemia, M.H.;Akhavan-Behabadi, M.A.;Nasr, M.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2014
  • Experiments are performed to investigate the single-phase flow heat transfer augmentation of MWCNT/HT-B Oil in both smooth and micro-fin helical tubes with constant wall temperature. The tests in laminar regime were carried out in helical tubes with three curvature ratios of 2R/d=22.1, 26.3 and 30.4. Flow Reynolds number varied from 170 to 1800 resulting in laminar flow regime. The effect of some parameters such as the nanoparticles concentration, the dimensionless curvature radius (2R/d) and the Reynolds number on heat transfer was investigated for the laminar flow regime. The weight fraction of nanoparticles in base fluid was less than 0.4%. Within the applied range of Reynolds number, results indicated that for smooth helical tube the addition of nanoparticles to the base fluid enhanced heat transfer remarkably. However, compared to the smooth helical tube, the average heat transfer augmentation ratio for finned tube was small and about 17%. Also, by increasing the weight fraction of nanoparticles in micro-fin helical tubes, no substantial changes were observed in the rate of heat transfer enhancement.

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young;Lee, Donggeun;Yang, Sangsun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2018
  • In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Classification and Condensation of Nano-sized Airborne Particles by Electrically Tuning Collection Size (포집크기의 전기적 튜닝 기술을 이용한 나노크기의 공기중 입자 분류 및 수농도 응축)

  • Kim, Yong-Ho;Kwon, Soon-Myoung;Park, Dong-Ho;Hwang, Jung-Ho;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1874-1879
    • /
    • 2008
  • It is not easy to detect nano-sized airborne particles (< 100 nm in diameter) in air. Therefore, the condensation of the nanoparticles alongside of the size-classification is needed for their detection. This paper proposes a hybrid (aerodynamic+electrical) particle classification and condensation device using a micro virtual impactor (${\mu}VI$). The ${\mu}VI$ can classify the nanoparticles according to their size and condense the number concentration of nanoparticles interested. Firstly, the classification efficiency of the ${\mu}VI$ was measured for the particles, polystyrene latex (PSL), ranging from 80 to 250 nm in diameter. Secondly, the nanoparticles, NaCl of 50 nm in diameter, were condensed by 4 times higher. In consequence, the output signal was amplified by 4 times (before condensation: 4 fA, after condensation: 16 fA). It is expected that the proposed device will facilitate the detection of nanoparticles.

  • PDF

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

Fluorescent Magnetic Silica Nanotubes with High Photostability Prepared by the Conventional Reverse Micro-Emulsion Method

  • Zhang, Yuhai;Son, Sang Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4165-4168
    • /
    • 2012
  • Magnetic fluorescent silica nanotubes were fabricated using reverse micro-emulsions coupled with conventional sol-gel methods. Anodic aluminum oxide templates were used to separate spatially the magnetic and the fluorescent moieties on individual nanotubes and so prevent quenching of the fluorescence. C18 and fluorescent layers were deposited sequentially on silica. Magnetism was then obtained by the introduction of pre-made magnetic nanoparticles inside the nanotubes. The photo- and chemical stabilities of nanotubes were demonstrated through dye release and photobleaching tests. The produced nanotubes did not show fluorescence quenching upon the addition of the nanoparticles, an advantage over conventional spherical fluorescent magnetic nanoparticles. High photostability of nanotubes, magnetism and biocompatiblily make them potentially useful in bioanalysis.