Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays

산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성

  • 김성현 (이화여자대학교 에코과학부) ;
  • 정미애 (서강대학교 생명과학과) ;
  • 이인숙 (이화여자대학교 에코과학부)
  • Received : 2009.10.08
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

본 연구에서는 CuO와 ZnO의 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성을 microcosm 실험을 통하여 살펴보았다. 나노 입자는 micro 입자에 비해 옥수수의 biomass를 약 30% 감소시켜 나노 입자가 옥수수의 성장을 저해하는 것으로 나타났다. 토양 미생물 활성 지표인 Dehydrogenase activity는 CuO 나노 입자에서는 낮게 나타났으나 ZnO 나노 입자에서는 높게 나타났다. Biolog test 결과, CuO 나노 입자와 ZnO micro 입자에서 토양 미생물 다양성이 감소하는 것으로 나타났다. 그러므로, metal oxide의 나노 입자가 micro 입자보다 항상 토양 미생물의 활성 및 다양성에 더 유해한 영향을 나타내는 것은 아니라고 판단된다.

Keywords

References

  1. Cai, R., Van, G. M., Aw, P. K., and Itoh, K., “Solar-driven self-cleaning coating for a painted surface,” Chem., 9, 829-835(2006)
  2. Chang, H., Jwo, C. S., Lo, C. H., and Lin, H. M., “Rheology of CuO nanoparticle suspension prepared by ASNSS,” Rev. Adv. Mater. Sci., 10, 128-132(2005)
  3. Shah, V., and Belozerova, I ., “Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds,” Water. Air. Soil Pollut., 197, 143-148(2009) https://doi.org/10.1007/s11270-008-9797-6
  4. Nel, A., Xia, T., M$\ddot{a}$dler, L., and Li, N., “Toxic Potential of materials at nanolevel,” Science., 311, 622-627(2006) https://doi.org/10.1126/science.1114397
  5. Lee, W. M., An, Y. J., Yoon, H., and Kweon, H. K., “Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (TritiZnm Aestivum): plant agar test for water-insoluble nanoparticles,” Environ. Toxicol. Chem., 27(9), 1915-1921(2008) https://doi.org/10.1897/07-481.1
  6. Lin, D., and Xing, B., 'Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth,' Environ. Pollut., 150(2), 243-250(2007) https://doi.org/10.1016/j.envpol.2007.01.016
  7. Yang, JC., Okamoto, T., Ichino, R., Bessho, T., sarake, S., and Okido, M., “A simple way for preparing antioxidation nano-copper powders,” Chem. Lett., 35(6), 648-649(2006) https://doi.org/10.1246/cl.2006.648
  8. Zhang, L., Jiang, Y., Ding, Y., Povey, Y., and York, D., “Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids),” J. Nanoparticles Research, 9, 479-489(2007) https://doi.org/10.1007/s11051-006-9150-1
  9. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G., Gadd, G. E. , and Casey, P. S., “Comparative toxicity of nanoparticulate ZnO, bulk ZnO and Zn$Cl_2$ to a freshwater microalga (Pseudokirchneriella subcapitata) : The importance of particle solubility,” Environ. Sci. Technol., 41, 8484-8490(2007) https://doi.org/10.1021/es071445r
  10. Trevor, J. T., Mayfield, J., and Inniss, W. E., “Measurement of electron transport system (ETS) activity in soil,” Microbiol. Ecol., 8, 163-168(1982) https://doi.org/10.1007/BF02010449
  11. Yang, Z., and Xie, C., “$Zn^{2+}$ release from zinc and zinc oxide particles in stimulated uterine solution,” Colloids Surf. B., 47, 140-145(2006) https://doi.org/10.1016/j.colsurfb.2005.12.007
  12. Kizilkaya, R., “Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn,” Bioresour. Technol., 99, 946-953(2008) https://doi.org/10.1016/j.biortech.2007.03.004
  13. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H., and Kahru, A., “Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vilbrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus,” Chemosphere, 71, 1308-1316(2008) https://doi.org/10.1016/j.chemosphere.2007.11.047
  14. Aruoja, V., Dubourguier, H., Kasemets, K., and Kahru, A., "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae pseudokirchneriella subcapitata," Science of the Total Environment , 407, 1461-1468(2009) https://doi.org/10.1016/j.scitotenv.2008.10.053