Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Myung, Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • Published : 2007.09.30

Abstract

An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Keywords

References

  1. Braydich-Stolle, L., S. Hussain, J. Schlager, and C. Hofmann. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88: 412-419 https://doi.org/10.1093/toxsci/kfi256
  2. Chavanpatil, M., A. Khdair, and J. Panyam. 2006. Nanoparticles for cellular drug delivery: Mechanisms and factors influencing delivery. J. Nanosci. Nanotechnol. 6: 2651-2663 https://doi.org/10.1166/jnn.2006.443
  3. Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, and L. Wan. 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163: 109-111 https://doi.org/10.1016/j.toxlet.2005.10.003
  4. Groneberg, D., M. Giersig, T. Welte, and U. Pison. 2006. Nanoparticle-based diagnosis and therapy. Curr. Drug Targets 7: 643-648 https://doi.org/10.2174/138945006777435245
  5. Gurr, J., A. Wang, C. Chen, and K. Jan. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213: 66-73 https://doi.org/10.1016/j.tox.2005.05.007
  6. Hussain, S., K. Hess, J. Gearhart, K. Geiss, and J. Schlager. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19: 975-983 https://doi.org/10.1016/j.tiv.2005.06.034
  7. Jeong, S. C., D. H. Lee, and J. S. Lee. 2006. Production and characterization of an anti-angiogenic agent from Saccharomyces cerevisiae K-7. J. Microbiol. Biotechnol. 16: 1904-1911
  8. Kim, H., H. Cho, S. Moon, H. Shin, K. Yang, B. Park, H. Jang, L. Kim, H. Lee, and S. Ku. 2006. Effect of exopolymers from aureobasidium pullulans on formalininduced chronic paw inflammation in mice. J. Microbiol. Biotechnol. 16: 1954-1960
  9. Kim, J. H., S. W. Kim, C. W. Yun, and H. I. Chang. 2005. Therapeutic effect of astaxanthin isolated from Xanthophyllomyces dendrorhous mutant against naproxeninduced gastric antral ulceration in rats. J. Microbiol. Biotechnol. 15: 633-639
  10. Liu, W. 2006. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 102: 1-7 https://doi.org/10.1263/jbb.102.1
  11. Lyakhovich, V., V. Vavilin, N. Zenkov, and E. Menshchikova. 2006. Active defense under oxidative stress. The antioxidant responsive element. Biochemistry 71: 962-974
  12. Moghimi, S. 2006. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med. Chem. 6: 553-561 https://doi.org/10.2174/187152006778699130
  13. Oberdorster, E. 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112: 1058-1062 https://doi.org/10.1289/ehp.7021
  14. Sayes, C., A. Gobin, K. Ausman, J. Mendez, J. West, and V. Colvin. 2005. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26: 7587-7595 https://doi.org/10.1016/j.biomaterials.2005.05.027
  15. Song, H., K. Na, K. Park, C. Shin, H. Bom, D. Kang, S. Kim, E. Lee, and D. Lee. 2006. Intratumoral administration of rhenium-188-labeled pullulan acetate nanoparticles (PAN) in mice bearing CT-26 cancer cells for suppression of tumor growth. J. Microbiol. Biotechnol. 16: 1491-1498
  16. Wang, B., W. Feng, T. Wang, G. Jia, M. Wang, J. Shi, F. Zhang, Y. Zhao, and Z. Chai. 2006. Acute toxicity of nanoand micro-scale zinc powder in healthy adult mice. Toxicol. Lett. 161: 115-123 https://doi.org/10.1016/j.toxlet.2005.08.007
  17. Yin, H., H. Too, and G. Chow. 2005. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26: 5815-5826
  18. Yu, W., E. Chang, R. Drezek, and V. Colvin. 2006. Watersoluble quantum dots for biomedical applications. Biochem. Biophys. Res. Commun. 348: 781-786 https://doi.org/10.1016/j.bbrc.2006.07.160
  19. Zheng, J., P. Nicovich, and R. Dickson. 2007. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 58: 409-431 https://doi.org/10.1146/annurev.physchem.58.032806.104546