5-Aminolevulinic Acid Biosynthesis in Escherichia coli Coexpressing NADP-dependent Malic Enzyme and 5-Aminolevulinate Synthase

  • Shin, Jeong-Ah (Department of Biotechnology, The Catholic University of Korea) ;
  • Kwon, Yeong-Deok (Department of Biotechnology, The Catholic University of Korea) ;
  • Kwon, Oh-Hee (Department of Biotechnology, The Catholic University of Korea) ;
  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
  • Published : 2007.09.30

Abstract

5-Aminolevulinate (ALA) synthase (E.C. 2.3.1.37), which mediates the pyridoxal phosphate-dependent condensation of glycine and succinyl-CoA, encoded by the Rhodobacter sphaeroides hemA gene, enables Escherichia coli strains to produce ALA at a low level. To study the effect of the enhanced C4 metabolism of E. coli on ALA biosynthesis, NADP-dependent malic enzyme (maeB, E.C. 1.1.1.40) was coexpressed with ALA synthase in E. coli. The concentration of ALA was two times greater in cells coexpressing maeB and hemA than in cells expressing hemA alone under anaerobic conditions with medium containing glucose and glycine. Enhanced ALA synthase activity via coupled expression of hemA and maeB may lead to metabolic engineering of E. coli capable of large-scale ALA production.

Keywords

References

  1. Beale, S. I. and D. J. Weinstein. 1990. Tetrapyrrole Metabolism in Photosynthetic Organisms. McGrawHill, New York
  2. Berger, A. P., H. Steiner, A. Stenzl, T. Akkad, G. Bartsch, and L. Holtl. 2003. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: A single-center study. Urology 61: 338-341 https://doi.org/10.1016/S0090-4295(02)02123-4
  3. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554 https://doi.org/10.1023/A:1005520007230
  4. Fales, L., L. Nogaj, and J. Zeilstra-Ryalls. 2002. Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: In vivo evidence for the presence of two promoters that are both regulated by fnrL. Photosynth. Res. 74: 143-151 https://doi.org/10.1023/A:1020947308227
  5. Gosset, G., Z. Zhang, S. Nayyar, W. A. Cuevas, and M. H. Saier Jr. 2004. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol. 186: 3516-3524 https://doi.org/10.1128/JB.186.11.3516-3524.2004
  6. Hong, S. H. and S. Y. Lee. 2002. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 58: 286-290 https://doi.org/10.1007/s00253-001-0899-y
  7. Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286
  8. Jordan, P. M. 1990. Biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria, pp. 55-121. In H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls. McGraw-Hill, New York
  9. Kang, D. K., S. S. Kim, W. J. Chi, S. K. Hong, H. K. Kim, and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the Production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 4: 1327-1332
  10. Kim, P., M. Laivenieks, C. Vieille, and J. G. Zeikus. 2004. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70: 1238-1241 https://doi.org/10.1128/AEM.70.2.1238-1241.2004
  11. Kuramochi, H., M. Konnai, T. Tanaka, and Y. Hotta. 1997. Method for improving plant salt tolerance. US Patent 5,661,111
  12. Kwon, Y. D., O. H. Kwon, H. S. Lee, and P. Kim. 2007. The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. doi. 10. 1111/J. 1365-2672. 2007. 03485X (in press)
  13. Kwon, Y. D., S. Y. Lee, and P. Kim. 2006. Influence of gluconeogenic phosphoenolpyruvate carboxylkinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16: 1448-1452
  14. Lee, D. H., W. J. Jun, J. W. Yoon, H. Y. Cho, and B. S. Hong. 2004. Process strategies to enhance the production of 5- aminolevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 4: 1310-1317
  15. Mauzerall, D. and S. Granick. 1956. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
  16. Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins 7: 342-347
  17. Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. Wiley-Liss Inc., New York
  18. Neidle, E. L. and S. Kaplan. 1993. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J. Bacteriol. 175: 2304-2313 https://doi.org/10.1128/jb.175.8.2304-2313.1993
  19. Ranson-Olson, B., D. F. Jones, T. J. Donohue, and J. H. Zeilstra-Ryalls. 2006. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J. Bacteriol. 188: 3208-3218 https://doi.org/10.1128/JB.188.9.3208-3218.2006
  20. Sambrook, J. and D. W. Russell. 2000. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, NY
  21. Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29 https://doi.org/10.1007/s00253-001-0858-7
  22. Sasikala, c., C. V. Ramana, and P. R. Rao. 1994. 5-Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459 https://doi.org/10.1021/bp00029a001
  23. Smith, A. J. and L. J. Roger. 1988. Tetrapyrrole biosynthesis - the C5 pathway, pp. 69-96. In L. J. Rogers and J. R. Gallon (eds.), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford
  24. Szeimies, R. M. and M. Landthaler. 2002. Photodynamic therapy and fluorescence diagnosis of skin cancers. Recent Results Cancer Res. 160: 240-245
  25. Thakker, C., B. Suresh, and D. Ranade. 2006. Formation of succinic acid by Klebsiella pneumoniae MCM B-325 under aerobic and anaerobic conditions. J. Microbiol. Biotechnol. 16: 870-879
  26. Vadali, R. V., G. N. Bennett, and K. Y. San. 2004. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab. Eng. 6: 133-139 https://doi.org/10.1016/j.ymben.2004.02.001
  27. van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
  28. Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 28: 325-332 https://doi.org/10.1038/sj.jim.7000250
  29. Verderber, E., L. J. Lucast, J. A. Van Dehy, P. Cozart, J. B. Etter, and E. A. Best. 1997. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J. Bacteriol. 179: 4583-4590 https://doi.org/10.1128/jb.179.14.4583-4590.1997