• Title/Summary/Keyword: metric structure

Search Result 285, Processing Time 0.039 seconds

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, In-Bae;Lim, Dong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Let M be a real hypersurface with almost contact metric structure $(\phi,g,\xi,\eta)$ in a complex space form $M_n(c)$, $c\neq0$. In this paper we prove that if $R_{\xi}L_{\xi}g=0$ holds on M, then M is a Hopf hypersurface in $M_n(c)$, where $R_{\xi}$ and $L_{\xi}$ denote the structure Jacobi operator and the operator of the Lie derivative with respect to the structure vector field $\xi$ respectively. We characterize such Hopf hypersurfaces of $M_n(c)$.

NOTE ON REAL HYPERSURFACES OF NONFLAT COMPLEX SPACE FORMS IN TERMS OF THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR

  • KIM, NAM-GIL;LI, CHUNJI;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.487-504
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g) in a nonflat complex space form $M_n(c)$. We denote by A and S be the shape operator and the Ricci tensor of M respectively. In the present paper we investigate real hypersurfaces with $g(SA{\xi},\;A{\xi})=const$. of $M_n(c)$ whose structure Jacobi operator $R_{\xi}$ commute with both ${\phi}$ and S. We give a characterization of Hopf hypersurfaces of $M_n(c)$.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

SASAKIAN METRICS, INTEGRABILITY CONDITIONS AND OPERATORS ON COTANGENT BUNDLE

  • CAYIR, Hasim
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.749-763
    • /
    • 2018
  • In this paper firstly, It was studied almost paraholomorphic vector field with respect to almost para-Nordenian structure ($F^S$, g) and the purity conditions of the Sasakian metric is investigate with respect to almost para complex structure F on cotangent bundle. Secondly, we obtained the integrability conditions of almost paracomplex structure F by calculating the Nijenhuis tensors of F of type (1, 1) on $^CT(M_n)$. Finally, the Tachibana operator ${\phi}_{\varphi}$ applied to $^Sg$ according to F and the Vishnevskii operators (${\psi}_{\varphi}$-operator) applied to the vertical and horizontal lifts with respect to F on cotangent bundle.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

CRITICAL METRICS ON NEARLY KAEHLERIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.9-13
    • /
    • 1992
  • In this paper, we consider the function related with almost hermitian structure on a copact complex manifold. More precisely, on a 2n-diminsional complex manifold M admitting 2-form .ohm. of rank 2n everywhere, assume that M admits a metric g such that g(JX, JY)=g(X,Y), that is, assume that g defines an hermitian structure on M admitting .ohm. as fundamental 2-form-the 'almost complex structure' J being determined by g and .ohm.:g(X,Y)=.ohm.(X,JY). We consider the function I(g):=.int.$_{M}$ $N^{2}$d $V_{g}$, where N is the norm of Nijenhuis tensor N defined by (J,g). by (J,g).

  • PDF

Complete open manifolds and horofunctions

  • Yim, Jin-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.351-361
    • /
    • 1995
  • Let M be a complete open Riemannian manifold. When the sectional curvature $K_M$ of M is nonpositive, Gromov has defined, in his lectures [3], the ideal boundary of M, and used it to study the geometric structure of M. In a Hadamard manifold, a simply connected manifold with nonpositive sectional curvature, a point at infinity can be defined as an equivalence class of rays. He proved many interesting theorems using this definition of ideal boundary and the so-called Tit's metric on it. He also suggested a counterpart to this for nonnegative curvature case. This idea has been taken up by Kasue to study the structure of complete open manifolds with asympttically nonnegative curvature [14]. Motivated by these works, we will define an idela boundary of a general noncompact manifold M, and study its structure.

  • PDF

Athermalization of an Optical System Based on Lens Shape and Assembly Method

  • Xu, Sihua;Peng, Xiaoqiang;Tie, Guipeng;Guan, Chaoliang;Hu, Hao;Xiong, Yupeng
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.429-437
    • /
    • 2019
  • Temperature adaptability is an important metric for evaluating the performance of an optical system. The temperature characteristics of the optical system are closely related to the material and shape of its lens. In this paper, we establish a mathematical model relating the temperature characteristics to the shape and material of the lens. Then a novel assembly structure that can solve the lens constraint and positioning problem is proposed. From those basics, the correctness of the theoretical model and the effectiveness of the assembly structure are verified through simulated analysis of the imaging quality of the optical system, whose operating temperature range is $-60{\sim}100^{\circ}C$.