• Title/Summary/Keyword: method of differential equation

Search Result 990, Processing Time 0.032 seconds

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.

Eigenstructure Assignment for Linear Time-Varying Systems: a Differential Sylvester Equation Approach (미분 Sylvester 방정식을 이용한 선형 시변 시스템의 고유구조 지정기법)

  • 최재원;이호철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.777-786
    • /
    • 1999
  • This work is concerned with the assignment of the desired eigenstructure for linear time-varying systems such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain scheduling control appeared to be the focus of the research efforts. Scheduling of frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious, and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, ⅰ) we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and ⅱ) we also propose an eigenstructure assignment scheme for linear time-varying systems via the differential Sylvester equation based upon the newly developed notions. The whole design procedure of the proposed eigenstructure assignment scheme is very systematic, and the scheme could be used to determine the stability of linear time-varying systems easily as well as provides a new horizon of designing controllers for the linear time-varying systems. The presented method is illustrated by a numerical example.

  • PDF

NUMERICAL SOLUTION OF A CLASS OF THE NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

  • Saeedi, L.;Tari, A.;Masuleh, S.H. Momeni
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.65-77
    • /
    • 2013
  • In this paper, we develop the operational Tau method for solving nonlinear Volterra integro-differential equations of the second kind. The existence and uniqueness of the problem is provided. Here, we show that the nonlinear system resulted from the operational Tau method has a semi triangular form, so it can be solved easily by the forward substitution method. Finally, the accuracy of the method is verified by presenting some numerical computations.

THE RELIABLE MODIFIED OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.409-420
    • /
    • 2019
  • In this article, we discussed semi-analytical approximated methods for solving mixed Volterra-Fredholm integro-differential equations, namely: Adomian decomposition method and modified Adomian decomposition method. Moreover, we prove the uniqueness results and convergence of the techniques. Finally, an example is included to demonstrate the validity and applicability of the proposed techniques.

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF