• 제목/요약/키워드: method: numerical simulations

검색결과 1,422건 처리시간 0.024초

전단 증진된 난류확산의 수치적 연구 (Numerical Study of Shear-Enhanced Turbulent Diffusion)

  • 이창훈;최재호
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.944-951
    • /
    • 2001
  • The purpose of this study is to investigate the effect of shear on turbulent diffusion. Turbulent Couette flows at low Reynolds number are numerically simulated using a Lagrangian PDF method. Flow field and particle trajectories are computed and analyzed in detail. Statistics for particle dispersion obtained from numerical simulations is compared with the classical scaling relations for dispersion in a shear flow.

복사열손실이 있는 비예혼합 튜브형 화염에 관한 수치 해석적 연구 (A Numerical Study of Opposed Nonpremixed Tubular Flames with Radiative Heat Loss)

  • 박현수;유춘상
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.247-250
    • /
    • 2015
  • The characteristics of opposed nonpremixed tubular flames with radiation heat loss are investigated using linear stability analysis and 2-D numerical simulations. Two extinction limits, as the $Damk{\ddot{o}}hler$ number is small or large, are confirmed using finite difference method with a simple continuation method. It is verified that the results of linear stability analysis predict the number of flame cells and the critical Da starting cellular instability or amplification of temperature near both extinction limits with good resolution.

  • PDF

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

화재실의 열유동 해석을 위한 수치 해석 방법 (Numerical Analysis Methods for Heat Flow in Fire Compartment)

  • 김광선;손봉세
    • 방재기술
    • /
    • 통권16호
    • /
    • pp.20-23
    • /
    • 1994
  • This article investigates the different numerical methods, which are widely used for purpose of simulating a fire compartment the particular numerical methods such as finite difference, finite element, control Volume, and finite analysis are discribed in order to understand basic concepts and their applications. The fire simulations using fferent methods for the different physical geometrics have been reported in many recent literatures The convergence rate, the accuracy, and the stability are no simply dependent upon the specific method, The study of popular nu-merical methods by being compared among those is therefore significant to understand the nu-merical simulation of fire compartment.

  • PDF

COMPARISON OF NUMERICAL METHODS FOR OPTION PRICING UNDER THE CGMY MODEL

  • Lee, Ahram;Lee, Younhee
    • 충청수학회지
    • /
    • 제29권3호
    • /
    • pp.503-508
    • /
    • 2016
  • We propose a number of finite difference methods for the prices of a European option under the CGMY model. These numerical methods to solve a partial integro-differential equation (PIDE) are based on three time levels in order to avoid fixed point iterations arising from an integral operator. Numerical simulations are carried out to compare these methods with each other for pricing the European option under the CGMY model.

경사식 방파제의 전면에 설치된 수중방파제의 영향에 관한 연구 (Influence of Submerged Breakwater in front of Rubble Mound Breakwater)

  • 민현성;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.217-220
    • /
    • 2008
  • The reflection coefficients and the run-up heights affected by submerged structures are studied by using the numerical and the laboratory experimental methods. The three-point method is chosen to calculate the reflection coefficients in both the experimental and the numerical methods. The results of numerical simulations are shown a good agreement with laboratory measurements. The reflection coefficients increase and the run-up heights decrease when the rubble mound breakwater is defended by low-crested structures.

  • PDF

직접법과 반복법(LMS법)의 합성 알고리즘을 이용한 직선배열 점음원의 적응 지향성 합성 SIMULATION (Adaptive directivity synthesis simulation of point source array using algorithm combined directive and recursive method(LMS method))

  • 조기량
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1453-1462
    • /
    • 1996
  • A numerical simulation is carried out on the directiveity synthesis of ultrasonic transducers by point source array. Directive method with combined LMS(Least-Mean-Square) method is practiced by means of a iterative method to realize the desired directivity. The directiviey of quasi-ideal beam with a beam width and a directive arbitrary specified was chosen. On the numerical resut, Proposed algorithm shows higher speed of clculating simulation than that of LMS method, and make adaptive control, which enables the desired directivity. Numerical simulations are carried out by PC(CPU:80486 DX2, RAM 16Mbyte).

  • PDF

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

오일러리언 접근법을 이용한 기류제트에 의한 가스-입자 2상 난류 유동특성 모델링 연구 (A Study on Numerical Modeling of Turbulent Gas-Particle Flows in a rectangular chamber Using Eulerian-Eulerian Method)

  • 김태국;민동호;윤경범;장희철
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this research is to model numerically the turbulent gas-particle flows in a rectangular chamber using Eulerian-Eulerian Method. A computer code using the ${\kappa}-{\varepsilon}-Ap$ two-phase turbulence model is developed for the numerical study. This code and the Eulerian multiphase model in FLUENT were used for the numerical simulations of the two-phase flow in a rectangular chamber. The numerical results calculated by the two different turbulent gas-particle codes have shown that the ${\kappa}-{\varepsilon}-Ap$ model results in a stronger diffusion of the flow momentum in the gas-particle turbulence interaction than the Eulerian multiphase model in FLUENT.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.