• Title/Summary/Keyword: methanol production

Search Result 652, Processing Time 0.029 seconds

Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila

  • Patel, Sanjay K.S.;Mardina, Primata;Kim, Sang-Yong;Lee, Jung-Kul;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.717-724
    • /
    • 2016
  • Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30℃, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml-1 inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.

Concurrent Production of Methanol and Dimethyl Ether from Carbon Dioxide Hydrogenation : Investgation of Reaction Conditions

  • 전기원;신원제;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.993-998
    • /
    • 1999
  • The concurrent production of methanol and dimethyl ether from carbon dioxide hydrogenation has been studied under various reaction conditions. First, the methanol synthesis was compared with the concurrent production method. For the methanol synthesis, the ternary mixed oxide catalyst (CuO/ZnO/Al2O3) was used and for the coproduction of methanol and dimethyl ether, silica-alumina was mixed with the methanol synthesis catalyst to be a hybrid catalyst. The results show that the co-production provides much higher per-pass yield than methanol synthesis even at very short contact time. The effects of temperature, contact time, pressure and catalyst hybrid ratio on the product yields and selectivities were also determined in the co-production.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

Methylosinus trichosporium을 이용한 메탄으로부터 메탄올 생성에 관한 연구 (Studies on Methanol Production from Methane by Methylosinus trichosporium)

  • 강환구
    • KSBB Journal
    • /
    • 제11권6호
    • /
    • pp.642-648
    • /
    • 1996
  • 본 연구에서는 에탄 자화균인 Methylosinus trichosporim OB3b를 이용하여 메탄으로부터 에탄올 생성에 관한 실험을 수행하였다. 에탄으로부터 에탄올을 생성하기 위해서는 메탄 산화과정 중 두번 째 효소인 methanol dehydrogenase 효소의 활성을 부분 저해해야 하므로 이를 위해 EDTA를 사용한 결과 EDTA가 methanol dehydrogenase의 저해제 임을 확인하였고 배지에 6mM EDTA를 첨가하였을 때 전혀 첨가하지 않았을 때와 비교하여 메탄올 생 성이 약 5배 정도 증가되어 lOmmole/L의 에탄율을 얻을 수 있었다. 또한 Cu의 존재유무가 에단올 생성 에 미치는 영향을 실험한 결과 ImM Cu 존재시 $5\mu\textrm{M}$ Cu 존재하에 비해 메탄올 생성이 약 2.5배 증가되어 약 11mmole/L의 메탄올을 얻을 수 있었는데 이는 Cu 존재가 입자상(particulate) MMO의 생성을 촉 진시키며 생성된 이 세포 단위중량당 MMO 활성이 높은 pMMO가 에탄으로부터 에탄올의 생성을 촉진 시키는 것으로 생각된다. 그리고 온도가 에탄올 생 성에 미치는 영향을 실험한 결과 온도가 3TC에서 $30^{\circ}C , 25^{\circ}C$ 로 낮아점에 따라 생성 메단올 농도가 증 가하여 15.5mmole/L에 이르렀고 메탄 소비속도도 증가됨을 알 수 있였다. 또한 메단과 산소의 구생성 분비가 에탄올 생성에 미치는 영향을 실험한 결과 산소대비 에탄 농도가 증가할수록 생성 에탄올의 농 도 및 세포농도가 증가됨을 알 수 였다. 그리하여 50% 메탄, 50% 산소 존재하에 비해 70% 에탄, 30% 산소 경우에는 약 50% 증가된 15.3 mmole/L 농도의 머l단올을 얻을 수가 있였으며 세포농도도 많이 증가됨을 알 수 있다.

  • PDF

Effect of methanol feed rate on the production of saxatilin by recombinant Pichia pastoris

  • 민철기;박홍우;정광희
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.376-379
    • /
    • 2000
  • 메탄올 자화효모인 Pichis pastoris는 메탄올에 의해 유도되는 강력한 AOX1 프로모터의 존재로 인하여 외래 단백질의 생산을 위한 가장 좋은 숙주중의 하나이다. methanol fed batch phase(MFP)동안에 메탄올의 공급은 그 메탄올이 단백질의 발현을 유도하며 또한 숙주에게 에너지원으로 쓰이기 때문에 매우 중요하다. 과량의 메탄올은 세포의 성장을 저해하며, 반면에 불충분한 메탄올의 공급은 세포를 느리게 자라게 하고 생산성도 떨어뜨린다. 본 연구는 새로운 혈소판 응집 억제제인 saxatilin의 생산성, 혹은 수율을 최대화 하기 위해서 메탄올의 공급속도와 세포의 비성장속도를 조절하였다.

  • PDF

Continuous methanol synthesis directly from methane and steam over Cu(II)-exchanged mordenite

  • Lee, Sae Ha;Kang, Jong Kyu;Park, Eun Duck
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2145-2149
    • /
    • 2018
  • The formation of methanol directly from methane and steam was observed over Cu ion-exchanged mordenite. Furthermore, the continuous production of methanol was achieved by co-feeding methane and steam over Cumordenite. The methanol production rate was comparable to that reported in the stepwise process in which activation, methane reaction, and extraction of methanol were carried out separately.

Methanol 자화성 세균 Pseudomonas sp. ILS-003에 의한 $poly-{\beta}-hydroxybutyric$ acid의 생산 (Production of $poly-{\beta}-hydroxybutyric$ acid by methanol assimilating bacterium, Pseudomonas sp. ILS-003)

  • 이일석;방원기
    • Applied Biological Chemistry
    • /
    • 제34권3호
    • /
    • pp.273-278
    • /
    • 1991
  • Methanol 자화성 세균 Pseudomonas sp. ILS-003 균주를 이용하여 methanol로부터 PHB생산의 최적조건을 검토하였다. PHB 생산에 있어서 초기 pH 6.4, 온도 $30^{\circ}C$ 및 methanol 농도가 1.0(v/v)일 때 최적이었으며, 질소원으로는 $(NH_4)_2SO_4$가 최적이었으며 농도는 0.8g/l로서 C/N비가 17.4이었다. 또한 2가 금속이온의 결핍은 PHB축적효과를 나타내었다. Fed-batch culture에서 methanol 첨가의 효과는 0.25%(v/v)씩 첨가했을 때 가장 좋았다. 상기의 최적조건하에서 96시간 배양시 균체량은 2.78g/l였고 PHB의 양은 1.94g/l로서 건조균체량의 69.8%이었다.

  • PDF

Methylobacterium sp. GL-10의 유가식 배양에 의한 Methanol로 부터 Poly-$\beta$-hydroxybutyrate의 생산 (Production of Poly-$\beta$-hydroxybutyrate from Methanol by Fed-batch Cultivation of methylobacterium sp. GL-10)

  • 이호재;이용현
    • KSBB Journal
    • /
    • 제6권1호
    • /
    • pp.35-43
    • /
    • 1991
  • The production of poly-$\beta$-hydroxybutyrate(PHB) from methanol by batch and fed-batch cultivations of Methylobacterium sp. GL-10 was studied. PHB accumulation was stimulated by the nutrients deficiency including, NH4+, SO42-, and K+. The nitrogen deficiency was the most critical factor for PHB accumulation. In batch cultivation, the maximum cell concentration and PHB content were 1.86g/l and 0.62g/l, respectively, with 1.0%(v/v) of methanol and 0.5g/1 of ammonium sulfate. The mass doubling time of Methylobacterum sp. GL-10 was in the range of 4-5 hrs. The cell growth and PHB accumulation were severely inhibited at the methanol concentration over than 2% (v/v). To overcome methanol Inhibition, constant feeding and intermittent feedillg fed-batch cultivations were adopted, using C/N molar ratio as a control factor. In constant feeding fed-batch process, cell concentration was increased up to 2.67g/1, and PHB yield was enhanced from 0.33 of batch culture to 0.53. The relatively low cell concentration was caused by methanol accumulated in culture broth at late growth phase. To prevent methanol accumulation and to maximize PHB production, DO-state intermittent fed-batch cultivation was attempted. The cell and PHB concentration was reached up to 4.55g/1 and 1.80g/1, respectively. It was possible to maintain methanol concentration low and also to feed nutrient of desired C/N molar ratio.

  • PDF

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S.;Jeong, Jae-Hoon;Mehariya, Sanjeet;Otari, Sachin V.;Madan, Bharat;Haw, Jung Rim;Lee, Jung-Kul;Zhang, Liaoyuan;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2098-2105
    • /
    • 2016
  • Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

마우스대식세포주인 RAW 264.7에서 SD-01의 항염증 활성 연구 (Anti-inflammatory effect of SD-01 in RAW 264.7 cells)

  • 박선동
    • 대한본초학회지
    • /
    • 제25권3호
    • /
    • pp.19-25
    • /
    • 2010
  • Objective : The aim of this study was to investigate anti-inflammatory activity of SD-01 methanol extract in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods : Cytotoxic activity of SD-01 methanol extract on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines and $PGE_2$ were measured by ELISA method. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), $I{\kappa}$-B-alpha and nuclear NF-${\kappa}$ B p65 expression were detected by western blot. Results : Our results indicated that methanol extract of SD-01 significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1\beta$, IL-6 and MCP-1 production in RAW 264.7 cells. Moreover, methanol extract of SD-01 treatment also blocked LPS-induced NF-kB activation. Conclusion : These findings indicate that methanol extract of SD-01 inhibits the production of pro-inflammatory mediators and cytokines via suppression of NF-${\kappa}$ B activation. Take together, these results indicate that methanol extract of SD-01 has the potential for use as an agent of anti-chronic inflammatory diseases.