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Introduction

Anthropogenic activities have led to an exorbitant increase

in greenhouse gas (GHG) emissions worldwide, which, in

turn, has increased awareness about the utilization of

alternative energy for sustainable development [5, 7, 10, 42,

44]. Several studies have demonstrated the potential of

other energy sources, such as hydrogen (H2), methane

(CH4), and alcohols, as promising alternatives to fossil fuels

[3, 11, 12, 15, 23, 26, 27, 32, 34, 35, 38]. Among these, CH4, a

potent GHG associated with several environmental issues,

is receiving major attention. One potential strategy for

curbing CH4 emissions is to transform the gas to methanol,

which can then be used as fuel or raw material for the

production of organic solvents [5, 7, 42]. Several efforts

have been undertaken to increase the cost effectiveness and

sustainability of the bioconversion process, attracting the

attention of industries [4, 8, 9, 17, 28, 29, 33, 44, 45].

Methanotrophs, which utilize CH4 as a major carbon source,

play an essential role in the global carbon cycle by limiting

the escape of this greenhouse gas into the atmosphere.

These microorganisms inhabit soils, wetlands, sediments,

fresh and marine waters, lakes, and peat bogs, where they

act as biofilters, thus reducing CH4 emissions into the

atmosphere [2, 19]. Even though the CH4 concentration in

upland soils remains at atmospheric levels or below, the

diverse range of methanotrophs present in such habitats is

sufficiently active to reduce CH4 and respond to the changes

in temperature, soil moisture, and nitrogen availability [2, 14].

Methanotrophs possess the unique ability to utilize CH4
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Massive reserves of methane (CH4) remain unexplored as a feedstock for the production of

liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable

strategies for selective oxidation of CH4 to methanol. The present study demonstrates the

bioconversion of CH4 to methanol mediated by Type I methanotrophs, such as

Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a

Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation

methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells

demonstrated higher stability for methanol production. The optimal pH, temperature, and

agitation rate were determined to be pH 7.0, 30oC, and 175 rpm, respectively, using inoculum

(1.5 mg of dry cell mass/ml) and 20% of CH4 as a feed. Under these conditions, maximum

methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after

six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6%

of their initial efficiency for methanol production, respectively, in comparison with the

efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation

of methanotrophs is a promising approach to improve the stability of methanol production.
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as the carbon source and act by oxidizing the gas to

methanol with methane monooxygenase (MMO), which is

then converted to formaldehyde by the activity of methanol

dehydrogenase (MDH). Following this, formaldehyde is

converted to formic acid in a reaction catalyzed by

formaldehyde dehydrogenase, followed by conversion of

formic acid to CO2 by formate dehydrogenase [5, 31]. MMO

is a metalloenzyme belonging to the oxidoreductase class

of enzymes, with the ability to oxidize alkanes to primary

alcohols. Type I methanotrophs, including Methylobacter,

Methylomicrobium, and Methylocaldum, produce only the

particulate form of the enzyme (pMMO). However, Type II

methanotrophs, including Methylosinus, Methylocella and

Methylocystis, produce both soluble (sMMO) and particulate

(pMMO) forms of MMO. The Type X methanotrophs

possess certain properties common to both Type I and II

methanotrophs [5, 29, 41].

Methylosinus sporium is an obligate, aerobic methanotroph,

which primarily utilizes C1 carbon sources such as CH4,

carbon dioxide (CO2), and methanol as growth substrates

[28, 44]. M. sporium belongs to the Type II class of

methanotrophs, and is known to produce both sMMO and

pMMO [1, 44]. Whereas sMMO is synthesized in the

cytoplasm and is expressed at low concentrations of copper

in the medium, pMMO is membrane-bound and is

expressed at higher copper concentrations [31, 43]. One of

the distinctive features of M. sporium, compared with other

Methylosinus species, is its ability to produce a water-

soluble, brown-black-colored pigment [1]. The inhibitors of

MDH, such as phosphate buffer, ammonium chloride,

ethylenediaminetetraacetic acid, magnesium chloride

(MgCl2), and sodium chloride, offer significant advantages

to improve methanol production [4, 8, 17, 28, 31, 40, 43].

Additionally, immobilization is widely used to improve

the properties of cells [16-18, 20, 24, 25, 30, 37, 39]. In this

study, the methanol production potential of immobilized

M. sporium cells was evaluated, using different encapsulation

methods, such as sodium-alginate (Na-alginate) and silica

gel. The results obtained suggest that an appropriate

encapsulation strategy may offer significant advantages for

methanol production, such as improved cell stability and

the potential for reuse of the immobilized cells.

Materials and Methods

Materials

The microbial strains M. sporium (DSMZ 17706), Methylomicrobium

(Mb.) album (ATCC 33003), and Mb. alcaliphilum (DSMZ 19304) were

procured from the German Collection of Microorganisms and Cell

Cultures (DSMZ) and American Type Culture Collection (ATCC).

The reagents alginic acid (sodium salt), pluronic (P-123) triblock

polymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-

poly(ethylene glycol)), polyethylene glycol, and tetraethylorthosilicate

(TEOS) were purchased from Sigma-Aldrich Pvt. Ltd. (USA). All

other chemicals used were procured from different commercial

sources. High-purity gases were purchased from NK C. Ltd

(South Korea).

Growth Conditions

Organisms were cultured in nitrate mineral salt (NMS) medium

(composition (g/l): KH2PO4 (0.26), Na2HPO4·12H2O (0.716), KNO3

(1.0), CaCl2 (0.20), MgSO4·7H2O (1.0), Fe-EDTA (0.38), and

Na2MO4·2H2O (0.026)). Trace element solution (1 ml) was added to

the medium (composition (g/l): ZnSO4·7H2O (0.40), H3BO3 (0.015),

CoCl2·6H2O (0.050), Na2-EDTA (0.250), MnCl2·4H2O (0.020), and

NiCl2·6H2O (0.010) (pH 7.0)). The cells were cultivated in 1 L

flasks with air-tight screw caps, containing 200 ml of NMS with

20% CH4. The flasks were incubated at 30°C on a rotary shaker

(Lab Champion IS-971R, USA) at 200 rpm for up to 7 days [31].

During the process of cultivation, 20% CH4 was added to the

flasks every other day. Grown cells were harvested by centrifugation

(Gyrozen 1580 MGR, South Korea) at 10,000 rpm for 15 min at

4°C, and then washed twice with phosphate buffer (20 mM, pH

7.0), as described previously [13, 21, 22, 31, 36]. The dry cell mass

(DCM) was calculated after incubation at 70°C for 48 h, and the

specific growth rate (μ) of M. sporium was determined using the

method described previously [31, 40]. The strains were maintained

on NMS agar plates at 4°C, and were revived by subculturing

after every 2 weeks. To check for possible contaminants, the R2

agar plate was used (Fluka, USA). 

Methanol Production

Production of methanol in batch cultures was evaluated in

120 ml serum bottles (Sigma-Aldrich, USA) containing 20 ml of

phosphate buffer (100 mM) with 10 μM of Fe(II) and 5 μM of

Cu(II). Initial inoculum of 1.5 mg DCM/ml was added to the

reaction mixture. Pure CH4 (20%) was used as a feed and the

cultures were incubated at 30°C, 150 rpm for 24 h [28, 31].

Effect of Inoculum Size

Different inoculum sizes, in the range of 0.5 to 12 mg of DCM/ml

of the reaction mixture, were evaluated for methanol production,

using the 20% CH4 as the feed, followed by incubation at 30°C for

24 h with shaking at 150 rpm.

Whole Cell Encapsulation of M. sporium

Encapsulation of M. sporium was performed using Na-alginate

and silica gel-based systems. For the Na-alginate bead entrapment

method, whole cells were prepared using 2% (w/v) alginate and a

loading concentration of 3 mg of DCM/ml was used, as described

previously [6, 17]. Briefly, washed cells were mixed with Na-

alginate solution, and the resulting mixture was extruded drop
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wise using a syringe into 200 ml of 1.5 M CaCl2 solution for the

preparation of beads. Thereafter, the cells containing Na-alginate

beads were washed with saline solution to remove any loosely

bound cells. The silica gel-based encapsulation of whole cells was

performed using synthetic precursor solution (20 ml), which is a

mixture of TEOS/P-123/H2O/ethanol/HCl/glycerol (molar ratio:

1/0.015/5.3/18.1/0.3/1.13; pH 5.0) and fresh culture (1 mg of

DCM/ml, 40 ml), as described previously [20]. Briefly, fresh

inoculum was mixed with the precursor solution, followed by

incubation at 30°C for 2 h with continuous stirring. Thereafter, the

encapsulated cells were washed with distilled water and buffer

solution to remove any unbound cells. These encapsulated cells

were then stored at 4°C. 

Optimization of Process Parameters

Methanol production by encapsulated M. sporium was evaluated

in the presence of MDH inhibitor (20 mM MgCl2) and Na-formate

(40 mM) at pH 6.4–7.5 in phosphate buffer (100 mM) using 20%

CH4 as feed, with incubation for 24 h at 150 rpm [31]. The ability of

encapsulated M. sporium cells to produce methanol was evaluated

at elevated temperatures (25°C to 40°C). For this purpose, cultures

were incubated at different temperatures (25°C, 30°C, 35°C, and

40°C) for 24 h, with agitation at 150 rpm. Furthermore, the influence

of agitation rates (100 to 200 rpm) on methanol production was

evaluated at optimum pH and temperature after 24 h of incubation.

Reusability

The reusability of immobilized M. sporium cells for methanol

production was tested under batch culture conditions for 24 h,

using 20% of CH4 as feed under optimum conditions. After each

cycle of methanol production, free and immobilized cells were

separated by centrifugation and washed with phosphate buffer, to

be used as inoculum for the next cycle. The methanol production

efficiency was taken as 100% in the initial (zero) cycle.

Analytical Methods

Cell growth was measured in terms of optical density at 595 nm

using a UV/Vis spectrophotometer (Jenway Scientific, UK) [13,

36]. Methanol concentrations in liquid samples were analyzed

using a gas chromatography (GC) system (Agilent 7890A, USA)

equipped with an HP-5 column (Agilent 19091J-413, USA),

connected to a FID detector. Helium was used as a carrier gas

along with H2, at a makeup flow of 25 ml/min and air (300 ml/min),

as described previously [28, 31].

Results and Discussion

Screening of Methane-Oxidizing Bacteria

Type I methanotrophs, Mb. album and Mb. alcaliphilum,

were evaluated for their methanol production potential, at

an initial inoculum of 1.5 mg DCM using 20% CH4 as feed

(Table S1). These strains produced 0.043 and 0.022 mM

methanol, respectively. The Type II methanotroph M. sporium

exhibited enhanced methanol production (0.94 mM) under

similar conditions. The methanol production observed here

was considerably higher than the methanol production of

0.71 mM reported in M. sporium KCTC 22312 from a

simulated biogas mixture of CH4 and CO2 [44].

Effect of Feed Concentration on Growth of M. sporium 

The effect of CH4 concentration on the growth of M. sporium

was evaluated using CH4 in the range of 10–50% as feed,

followed by incubation for 7 days, under similar conditions

as described previously [28, 31]. Initially, an increase in the

specific growth rate (µ) of M. sporium from 0.017/h to 0.023/h

was obtained with an increase in the CH4 concentration

from 10% to 20% in the head space (Table 1). This was

followed by a decrease in µ to 0.18/h at 50% CH4. Since the

maximum specific growth of M. sporium (0.023/h) was

obtained at 20% CH4 and beyond, this concentration was

used for the preparation of inoculum.

Effect of Inoculum Size on Methanol Production

The cell concentration significantly influences the methanol

production by methanotrophs [8, 17, 28, 31, 39, 44]. The

methanol production by M. sporium was evaluated using

20 mM MgCl2 as a MDH inhibitor and 40 mM of sodium-

formate in phosphate buffer (100 mM), pH 7.0 [28]. Methanol

production increased with an increase in the inoculum size

up to 24 h, followed by a decline (Fig. 1). An improvement

in methanol production from 1.75 to 4.52 mM was observed

with an increase in the concentration of cell inoculum from

0.5 to 12 mg of DCM/ml, using 20% CH4 as a feed (Fig. 1).

Similar trends have been reported in M. sporium using raw

biogas and synthetic gas mixture (CH4:CO2:H2) [28]. In this

study, methanol production was found to be significantly

higher than reported in earlier studies on M. sporium B2121,

where an increase in yield from 0.22 to 1.94 mM was

obtained upon increasing the inoculum size from 35 to

105 mg of cells/ml [37, 39]. In contrast, a lower inoculum of

Table 1. Effect of different CH4 concentrations used as feed on

the growth rate of M. sporium.

Feed (%) Specific growth rate (h-1)

10 0.017 ± 0.001

20 0.023 ± 0.002

30 0.021 ± 0.002

40 0.020 ± 0.002

50 0.018 ± 0.001
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M. sporium KCTC 22312 (0.05 mg of cells/ml) resulted in

higher methanol yields of up to 0.71 mM, using 50% synthetic

simulated biogas (CH4 and CO2) as a feed [43]. 

Whole Cell Immobilization

Whole cell immobilization methods, such as encapsulation,

aid in the improvement of stability of cells [6, 39]. Very few

reports have described the immobilization of methanotrophs

through encapsulation methods [17, 37, 39]. In the present

study, the encapsulation of M. sporium through two

different methods using Na-alginate and silica gel has been

carried out. The methanol production efficiencies of Na-

alginate- and silica gel-encapsulated cells were found to be

82.6% and 87.3% higher than that of the free cells (producing

3.84 mM methanol), respectively (Fig. 2). The M. sporium

cells immobilized through silica gel and Na-alginate

encapsulation methods are shown in Fig. 3. The methanol

production obtained was remarkably higher than that

reported in other encapsulated strains of M. sporium

(B2119-B2123) and M. trichosporium (B2117 and B2118),

which had methanol yields in the range of 1.37–1.97 mM

[39]. A lower methanol production (1.94 mM) was reported

in M. sporium B2121 encapsulated through polyvinyl alcohol

[37]. Similarly, Na-alginate-immobilized Methylocella tundrae

cells exhibited a lower methanol production efficiency of

72.4% using higher inoculum (3 mg of DCM/ml) and 50%

CH4 as feed [17]. 

Fig. 1. Effect of inoculum size on methanol production. 

The reaction was performed in 120 ml serum bottles with a working

volume of 20 ml, using different inoculum sizes of M. sporium (mg of

DCM/ml): ● (0.5), ○ (1.0), ▼ (1.5), △ (3.0), ■ (6.0), and □ (12). The

reaction mixture comprised Cu (5 µM), Fe (10 µM), MgCl2 (20 mM),

and sodium-formate (40 mM) in phosphate buffer (100 mM, pH 6.8).

The reaction was incubated at 30oC for 120 h with an agitation rate of

150 rpm using 20% CH4 as feed. Each value represents the mean of

triplicate measurements that varied from the mean by no more than

10%.

Fig. 2. Relative methanol production efficiency of encapsulated

M. sporium cells. 

Under batch culture conditions, methanol production was evaluated

in phosphate buffer (100 mM, pH 6.8) containing Cu (5 µM), Fe

(10 µM), MgCl2 (20 mM), sodium-formate (40 mM), and inoculum

(1.5 mg of DCM/ml) after incubation at 30oC for 24 h with an agitation

rate of 150 rpm using 20% CH4 as feed. Each value represents the

mean of triplicate measurements that varied from the mean by no

more than 10%.

Fig. 3. Whole cell immobilization of M. sporium using (A)

silica gel and (B) sodium-alginate beads. 

Silica gel encapsulation of cells was performed using synthetic

precursor solution (20 ml) comprising TEOS/P-123/H2O/ethanol/

HCl/glycerol (molar ratio: 1/0.015/5.3/18.1/0.3/1.13; pH: 5.0) and

fresh culture (1 mg of DCM/ml, 40 ml). Similarly, 2% (w/v) of Na-

alginate and a loading concentration of 3 mg of DCM/ml of M.

sporium we used for the preparation of Na-alginate beads.
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Effect of Physical Process Parameters 

In methanotrophs, optimization of pH could stimulate

higher cell growth and methanol production owing to

modulation of the activity of MMO, which is inhibited at

low and high pH values [8, 17, 18, 29]. To test this

hypothesis, the effect of varying the pH and temperature

on methanol production by free and encapsulated

M. sporium was studied. At pH values of 6.4 and 7.5, low

methanol production of 48.1% and 41.5% was recorded in

free cells, respectively. The optimal pH for maximum

methanol production (3.84 mM) was 6.8, with an incubation

period of 24 h (Fig. 4A). Encapsulation of M. sporium

through Na-alginate and silica gel resulted in relatively

higher stability of the cells over the pH range 6.4–7.5, with

the optimum pH being 7.0. Maximum methanol production

of 3.35 and 3.62 mM was observed by the encapsulated

cells. Besides the pH, the temperature also influenced the

activity of MMOs, thus modulating methanol production

by methanotrophs [17, 18, 29]. Methanol production

increased with increasing the incubation temperatures

from 25ºC to 30ºC, and a decrease was obtained beyond

this temperature (Fig. 4B). Maximum methanol production

by both free and encapsulated M. sporium cells was obtained

at 30ºC. 

Methanotrophs differ in their CH4 requirements. Besides

this, a variation in agitation rate, which affects the extent of

mixing in shake flasks, influences the nutrient availability

[17, 29, 31]. The effect of varying the agitation rate on

methanol production was investigated (Fig. 4C). Maximum

methanol production by free and encapsulated cells

through Na-alginate and silica gel methods were found to

be 3.84, 3.43, and 3.73 mM, at agitation rates of 150, 175,

and 175 rpm, respectively. Higher methanol production by

encapsulated M. sporium cells at increased agitation rates

could be attributed to limited diffusion. A decrease in

methanol production by free cells was obtained upon

increasing the agitation rate to 225 rpm. Overall, the

encapsulated cells exhibited higher stability for the methanol

production than the free cells. 

Methanol Production Profile and Reusability

Encapsulation of M. sporium cells through Na-alginate

and silica gel resulted in stable methanol production up to

120 h post incubation, as compared with the free cells

(Fig. 5A). Under optimum conditions, methanol production

after 120 h of incubation by free and encapsulated cells was

1.78, 2.65, and 2.86 mM, respectively. After six cycles of

methanol production under batch culture conditions, the

encapsulated M. sporium cells retained 61.8% and 51.6% of

Fig. 4. Effect of the process parameters (A) pH, (B)

temperature, and (C) agitation rate on methanol production

by encapsulated cells. 

Methanol production was evaluated in phosphate buffer (100 mM) at

different pH values (6.4-7.5), containing Cu (5 µM), Fe (10 µM),

MgCl2 (20 mM), sodium-formate (40 mM) and inoculum (1.5 mg of

DCM/ml), followed by incubation for 24 h using 20% CH4 as a feed.

Maximum methanol production by free (●) and encapsulated cells

through alginate (○) and silica gel (▼ ) was taken as 100%. Each

value represents the mean of triplicate measurements that varied

from the mean by no more than 10%.
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their methanol production efficiency (Fig. 5B). However,

the methanol production efficiency of free M. sporium cells

reduced to 11.5%. Polymer matrix-encapsulated M. sporium

(B2119-B2123) and M. trichosporium (B2117 and B2118)

strains had significantly reduced (up to 95%) methanol

production efficiency after three cycles of reuse [39]. Similarly,

Na-alginate-encapsulated M. tundrae DSMZ 15673 displayed

a lower efficiency of 57.5% after five cycles of reuse under

batch conditions [17]. Overall, encapsulation of M. sporium

cells through Na-alginate and silica gel resulted in 5.4- and

4.5-fold higher methanol production efficiency than the

free cells after six cycles of reuse. A comparative analysis of

methanol production by different encapsulated M. sporium

strains is presented in Table 2.

In conclusion, methanotrophic bacteria are known to

activate the strong C-H bond of CH4 under ambient

conditions. Therefore, these organisms have been used as

eco-friendly alternatives to convert CH4 to methanol. This

study highlighted the effect of cell immobilization approaches

on the methanol production stability of methanotrophs.

Under optimum conditions, maximum methanol production

of 3.43 and 3.73 mM was obtained by Na-alginate- and

silica gel encapsulated M. sporium cells, respectively, in

comparison with 3.84 mM methanol by free cells. After six

cycles of reuse, the encapsulated cells retained their

methanol production potential and exhibited 5.4- and 4.5-

fold higher methanol production efficiency than the free

cells. This is the first report on methanol production by

silica gel-encapsulated methanotrophic bacteria, which

also highlights the potential of metabolic engineering and

modeling studies to improve the methanol production

potential of methanotrophs. 
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