• 제목/요약/키워드: meteorological parameters

검색결과 440건 처리시간 0.029초

부산지역에 적합한 시간당 수평면 전일사량 산출모델의 비교분석 (Comparison Analysis of Estimation Models of Hourly Horizontal Global Solar Radiation for Busan, Korea)

  • 김기한;오기환
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.9-17
    • /
    • 2013
  • Hourly horizontal global solar radiation has been used as one of significant parameters in a weather file for building energy simulations, which determines the quality of building thermal performance. However, as about twenty two weather stations in Korea have actually measured the horizontal global sola radiation, the weather files collected in other stations requires solar data simulation from the other meteorological parameters. Thus, finding the reliable complicated method that can be used in various weather conditions in Korea is critically important. In this paper, three solar simulation models were selected and evaluated through the reliability test with the simulated hourly horizontal global solar radiation against the actually measured solar data to find the most suitable model for the south east area of Korea. Three selected simulation models were CRM, ZHM, and MRM. The first two models are regression type models using site-fitted coefficients which are derived from the correlation between measured solar data and local meteorological parameters from the previous years, and the last model is a mechanistic type model using the meteorological data to calculate conditions of atmospheric constituents that cause absorption and scattering of the extraterrestrial radiation on the way to the surface on the Earth. The evaluation results show that ZHM is the most reliable model in this area, yet a complicated hybrid simulation methods applying the advantages of each simulation method with the monthly-based weather data is needed.

북서태평양에서 저기압 위상 공간도법을 이용한 태풍의 온대저기압화 특성 분석 (Characteristics of the Extratropical Transition of Tropical Cyclones over the Western North Pacific using the Cyclone Phase Space (CPS) Diagram)

  • 이지윤;박종숙;강기룡;정관영
    • 대기
    • /
    • 제18권3호
    • /
    • pp.159-169
    • /
    • 2008
  • The characteristics of the typhoon's extratropical transition (ET) over the western North Pacific area were investigated using the cyclone phase space (CPS) diagram method suggested by Hart (2003). The data used in this study were the global data assimilation prediction system (GDAPS) and NCEP data set. The number of typhoons selected were 75 cases during 2002 to 2007, and the three parameters were analyzed : the motion relative thickness asymmetry of the storm (B), the upper thermal wind shear and the lower thermal wind shear. Comparing the best-track data provided by the Regional Specialized Meteorological Center /Tokyo, the time of the ET based on CPS was 2~6 hours earlier than the best-track data. And it was shown that the 400- km and 30 kt wind radius of storm for the CPS method were better agreement than the previous suggested radius 500- km.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON GPS HEIGHT DETERMINATION

  • Huang, Yu-Wen;Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.748-751
    • /
    • 2006
  • Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.

  • PDF

한국형모델의 항공기 관측 온도의 정적 편차 보정 연구 (A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model)

  • 최다영;하지현;황윤정;강전호;이용희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

Multiparameter recursive reliability quantification for civil structures in meteorological disasters

  • Wang, Vincent Z.;Fragomeni, Sam
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.711-726
    • /
    • 2021
  • This paper presents a multiple parameters-based recursive methodology for the reliability quantification of civil structures subjected to meteorological disasters. Recognizing the challenge associated with characterizing at a single stroke all the meteorological disasters that may hit a structure during its service life, the proposed methodology by contrast features a multiparameter recursive mechanism to describe the meteorological demand of the structure. The benefit of the arrangements is that the essentially inevitable deviation of the practically observed meteorological data from those in the existing model can be mitigated in an adaptive manner. In particular, the implications of potential climate change to the relevant reliability of civil structures are allowed for. The application of the formulated methodology of recursive reliability quantification is illustrated by first considering the reliability quantification of a linear shear frame against simulated strong wind loads. A parametric study is engaged in this application to examine the effect of some hyperparameters in the configured hierarchical model. Further, the application is extended to a nonlinear hysteretic shear frame involving some field-observed cyclone data, and the incompleteness of the relevant structural diagnosis data that may arise in reality is taken into account. Also investigated is another application scenario where the reliability of a building envelope is assessed under hailstone impacts, and the emphasis is to demonstrate the recursive incorporation of newly obtained meteorological data.

부산연안역에서 관측된 해풍전선의 특성 (On Characteristics of Sea Breeze Front observed in Pusan Coastal Area, Korea)

  • 전병일
    • 한국환경과학회지
    • /
    • 제6권6호
    • /
    • pp.629-636
    • /
    • 1997
  • We have analyzed focusing on the characteristics, speed and width of sea breeze front in Pusan coastal area using the meteorological data observed at Kimhae air force meteorological station because the presence of the front has Important effects on the dInstributlon of air pollution. The inland penetration of sea breeze front was recognized by steep variation of meteorological parameters(wind direction, wind speed, temperature, dew point temperature, air pressure, relative humidity) before and after its passage and the variation of $SO_2$ concentration, the speed and width of the sea breeze front was 2.07m/s and 217m, respectively. The structure and inland penetration of sea breeeze front should be taken into account whenever a model is to be compared with detailed field measurements.

  • PDF

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

Effects of Vertical Meteorological Changes on Heating and Cooling Loads of Super Tall Buildings

  • Song, Doosam;Kim, Yang Su
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.81-85
    • /
    • 2012
  • Vertical meteorological conditions encountered by super tall buildings, such as wind speed, temperature and humidity, vary due to their height. Therefore, it is necessary to consider these environmental changes to properly estimate the heating and cooling loads, and to minimize the energy demands for HVAC in super tall buildings. This paper aims to analyze how vertical meteorological changes affect heating and cooling loads of super tall buildings by using numerical simulation. A radiosonde, which observes atmospheric parameters of upper air such as wind speed, wind direction, temperature, relative humidity and pressure, was used to provide weather data for the building load simulation. A hypothetical super tall building was used for the simulation to provide quantified characteristics of the heating and cooling loads, comparing the lower, middle and upper parts of the building. The effect of weather data on the heating and cooling loads in super tall building was also discussed.

기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석 (Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data)

  • 권오현;이경수
    • 한국태양에너지학회 논문집
    • /
    • 제38권4호
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

Analysis of MODIS cloud masking algorithm using direct broadcast data over Korea and its improvement

  • Lee, H.J.;Chung, C.Y.;Ahn, M.H.;Nam, J.C.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.461-463
    • /
    • 2003
  • The information on the cloud presence within a instantaneous field of view is the first step toward the derivation of many other geophysical parameters. Here, we first applied the current MODIS cloud detection algorithm developed by University of Wisconsin and compared the results to a visual interpretation of composite data, especially during the daytime. Most of cases, the detection algorithm performs very well, except a few cases with over-detection. One of the reasons for the false detection is due to the time independent use of land information which affects the threshold values of visible channel test. In the presentation, we show detailed analysis of the current cloud detection algorithm and suggest possible way to overcome the current shortfall.

  • PDF