• Title/Summary/Keyword: metal sheets

Search Result 342, Processing Time 0.024 seconds

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

Mechanical Behavior of Sandwich Panels with Quasi-Kagome Truss Core Fabricated from Expanded Metals (확장금속망을 이용하여 제작된 준카고메 트러스 중간층을 갖는 샌드위치 판재의 기계적 거동)

  • Lim, Chae-Hong;Lim, Ji-Hyun;Jung, Jae-Gyu;Lim, Jong-Dae;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1078-1085
    • /
    • 2006
  • Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels with quasi-Kagome truss cores. First, metal sheets with a peculiar pattern of slits were expanded to be meshes, they are crimped into a triangular wave pattern, and then one third of struts were bent reversely to be quasi-Kagome trusses. Finally, two face sheets were bonded on the upper and the lower sides. The bending strength was estimated through elementary mechanics for the sandwich specimens with two kinds of face sheet the results of estimation were compared with the those of finite element analyses and experiments.

A comparative study of experiment and analysis of sheet matal in V-bending (V-벤딩 금형에서 박판 소재의 실험과 해석을 통한 스프링 백 비교 고찰)

  • Jeong, Gyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2021
  • When the product is removed from the mold after molding during the sheet metal molding process, elastic recovery causes a springback phenomenon. Much research has been done to minimize this phenomenon. In this study, V-bending experiments were conducted using galvanized steel sheets, stainless steel, and aluminum sheet materials, using a total of nine types of thin sheet materials of 1.0t, 1.5t, and 2.0t, respectively. Molding analysis and experimental data were compared and analyzed. In the case of galvanized steel sheets, it was considered that the springback phenomenon occurs more frequently in molding analysis than in experiments. It was considered that the springback phenomenon occurs greatly in the experiment, not the interpretation of the molding of the stainless steel plate and the aluminum plate. It was considered that the springback occurrence tendency of the molding analysis and the experiment was the same, and the springback occurrence error rate of the molding analysis and the experimental result was about 4.0%.

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

Study on the Mitigation of the Resonance due to the Power-Bus Structure using Periodic Metal-Strip Loaded Sheets

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.849-852
    • /
    • 2011
  • This paper investigates a method to tackle the resonance problems of the rectangular power-bus structure(PBS) using thin sheets loaded with periodic metal strips. The equivalent surface impedance of the proposed loading is calculated and involved in the expression of the impedance that accounts for in the PBS, in order to improve the resonance behavior of the original structure. The effects of the strips and the immediate surroundings are illustrated by a number of numerical experiments. Also the restrictions of the technique are addressed.

Electrical Properties of Carbon-Based Hybrid Resistor Bonded with Carbon Nanotube Paste (탄소나노튜브 페이스트 접합에 의한 탄소계 복합저항체의 전기적 특성)

  • Sunwoo Lee;Eun Min Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.482-487
    • /
    • 2023
  • A carbon-based hybrid resistor was fabricated using carbon nanotube (CNT) paste as an adhesive layer to establish electrically continuous ohmic contacts between CNT sheets and different CNT sheet or copper based metal alloy plates, and its electrical properties were evaluated. CNT sheets were fabricated using vacuum filtration with a CNT solution dispersed in isopropyl alcohol (IPA) solvent. The electrical characteristics of these carbon-based hybrid resistors were investigated. The CNT paste fulfilled the requirements for forming ohmic contacts between CNT sheets and metal alloy plates, which was attributed to the lowest work function difference and excellent wettability at the interface.

Basic Study in Fabrication and Mechanical Characteristics of Ultra Light Inner Structured and Bonded(ISB) Panel Containing Perpendicularly Woven Metal (수직방향 직조 금속망을 이용한 초경량 금속 내부구조 접합판재의 제작 및 특성에 관한 기초 연구)

  • Jung Chang Gyun;Yoon Seok-Joon;Yang Dong-Yol;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.152-158
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, due to their dimensional shape of metal between a pair of metal skin sheets or face sheets. Previous works showed that ISB panels containing inner structures formed as repeated pyramidal shapes saved weight up to $60\%$ in condition of same stiffness comparing with solid sheet. In this work, woven metal is adapted to inner structures replacing pyramidal structures. The test specimens of ISB panel containing woven metal made by multi-point electric resistance welding and 3-point bending test have been carried out. The results of experiments and comparisons of process parameters, stiffness and failure mode are discussed.

Formability of Laser Welds in Zn-coated Steel Sheets (아연도금강판에 대한 레이저 용접부의 성형성)

  • 박찬철;김재도
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.46-50
    • /
    • 1996
  • Continuous wave $CO_2$ laser beam welding and formability of zinc coated steel sheets were investigated. First, optimal welding condition could be obtained in butt welding by using the data for heat input and welding velocity. The highest value of Erichsen test is 79.3% compare to that of base metal. Secondly, Formability of laser welds was investigated by using ball punch tester. Finally, the forming results of butt-welded sheets showed that the joining design was important to apply the laser welded blank in the automotive production.

  • PDF

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Design of Shear Fracture Specimens for Sheet Metals Using Finite Element Analyses (유한요소해석을 이용한 금속 판재용 전단 파단 시편 설계)

  • C. Kim;H.J. Bong;M.G. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2023
  • In this study, shear fracture specimens are designed using finite element analyses for the characterization of ductile fracture criteria of metal sheets. Many recently suggested ductile fracture criteria require experimental fracture data at the shear stress states in the model parameter identification. However, it is challenging to maintain shear stress states in tension-based specimens from the initial yield to the final fracture, and the loading path can be different for the different materials even with the same shear specimen geometries. To account for this issue, two different shear fracture specimens for low ductility/high ductility metal sheets are designed using the sensitivity tests conducted by finite element simulations. Priorly mechanical properties including the Hosford-Coulomb fracture criterion of the aluminum alloy 7075-T6 and DP590 steel sheets are used in the simulations. The results show that shear stress states are well-maintained until the fracture at the fracture initiation points by optimizing the notch geometries of the shear fracture specimens.