DOI QR코드

DOI QR Code

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif (Department of Machine and Metal Technologies, Edremit Vocational School of Higher Education, Balikesir University)
  • Received : 2014.09.22
  • Accepted : 2015.07.11
  • Published : 2015.12.25

Abstract

The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

Keywords

References

  1. Abd-Allah, M.H., Abdint, E.M., Selmy, A.I. and Khashaba, U.A. (1997), "Effect of mean stress on fatigue behaviour of GFRP pultruded rod composites", Compos. Part A, 28A(1), 87-91.
  2. ASTM-D671 (1993), Flexural Fatigue of Plastics by Constant-Amplitude-of-Force.
  3. ASTM-D2583 (2007), Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor, American Society for Testing and Materials.
  4. ASTM-D790 (2010), Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, American Society for Testing and Materials.
  5. ASTM-D7264/D7264M (2007), Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, American Society for Testing and Materials.
  6. ASTM-D3039/D3039M (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, American Society for Testing and Materials.
  7. Ay, I., Sakin, R. and Okoldan, G. (2008), "An improved design of apparatus for multi-specimen bending fatigue and fatigue behaviour for laminated composites", Mater. Des., 29(2), 397-402. https://doi.org/10.1016/j.matdes.2007.01.017
  8. Bao, Y.W., Wang, W. and Zhou, Y.C. (2004), "Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements", Acta Mater., 52(18), 5397-5404. https://doi.org/10.1016/j.actamat.2004.08.002
  9. Becenen, N., Eker, B. and Sahin, M. (2010), "Mechanical properties of plastic matrix composite materials used in tractor bonnets", J. Reinf. Plast. Compos., 29(24), 3637-3644. https://doi.org/10.1177/0731684410386990
  10. Belingardi, G. and Cavatorta, M. (2006), "Bending fatigue stiffness and strength degradation in carbon-glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens", Int. J. Fatigue, 28(8), 815-825. https://doi.org/10.1016/j.ijfatigue.2005.11.009
  11. Belingardi, G., Cavatorta, M.P. and Frasca, C. (2006), "Bending fatigue behavior of glass-carbon/epoxy hybrid composites", Compos. Sci. Technol., 66(2), 222-232. https://doi.org/10.1016/j.compscitech.2005.04.031
  12. Bezazi, A.R., Mahi, A.E., Berthelot, J.-M. and Bezzazi, B. (2003), "Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach", Strength Mater., 35(2), 149-161. https://doi.org/10.1023/A:1023762528362
  13. Bezazi, A., Pierce, S., Worden, K. and Harkati, E. (2007), "Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network", Int. J. Fatigue, 29(4), 738-747. https://doi.org/10.1016/j.ijfatigue.2006.06.013
  14. Caprino, G. and Giorleo, G. (1999), "Fatigue lifetime of glass fabric/epoxy composites", Compos. Part A, 30, 299-304. https://doi.org/10.1016/S1359-835X(98)00124-9
  15. Davies, P. and Petton, D. (1999), "An experimental study of scale effects in marine composites", Compos. Part A, 30(3), 267-275. https://doi.org/10.1016/S1359-835X(98)00156-0
  16. El Mahi, A., Khawar Farooq, M., Sahraoui, S. and Bezazi, A. (2004), "Modelling the flexural behaviour of sandwich composite materials under cyclic fatigue", Mater. Des., 25(3), 199-208. https://doi.org/10.1016/j.matdes.2003.09.022
  17. El-Wafa, M.A.E.-W.M. (2004), Fatigue Behavior of Notched Gfr/Epoxy Composites, M.Sc. Dissertation; Zagazig University, Zagazig, Egypt.
  18. Epaarachchi, J.A. and Clausen, P.D. (2003), "An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies", Compos. Part A, 34(4), 313-326. https://doi.org/10.1016/S1359-835X(03)00052-6
  19. Goeij, W.C.d., van Tooren, M.J.L. and Beukers, A. (1999), "Implementation of bending-torsion coupling in the design of a wind-turbine rotor-blade", Appl. Energy, 63(3), 191-207. https://doi.org/10.1016/S0306-2619(99)00016-1
  20. Jha, K.N. (2012), Development of a Small Wind Power Generation Facility, M.Sc. Dissertation; Jadavpur University, Kolkata, India.
  21. Kar, N.K., Barjasteh, E., Hu, Y. and Nutt, S.R. (2011), "Bending fatigue of hybrid composite rods", Compos. Part A, 42(3), 328-336. https://doi.org/10.1016/j.compositesa.2010.12.012
  22. Keller, T., Tirelli, T. and Zhou, A. (2005), "Tensile fatigue performance of pultruded glass fiber reinforced polymer profiles", Compos. Struct., 68(2), 235-245. https://doi.org/10.1016/j.compstruct.2004.03.021
  23. Kensche, C. (2006), "Fatigue of composites for wind turbines", Int. J. Fatigue, 28(10), 1363-1374. https://doi.org/10.1016/j.ijfatigue.2006.02.040
  24. Khan, Z., Al-Sulaiman, F.A., Farooqi, J.K. and Younas, M. (2001), "Fatigue life predictions in woven carbon fabric/polyester composites based on modulus degradation", J. Reinf. Plast. Compos., 20(5), 377-398. https://doi.org/10.1177/073168401772678706
  25. Koricho, E.G., Belingardi, G. and Beyene, A.T. (2014), "Bending fatigue behavior of twill fabric E-glass/epoxy composite", Compos. Struct., 111, 169-178. https://doi.org/10.1016/j.compstruct.2013.12.032
  26. Kumar, S., Roy, N. and Ganguli, R. (2007), "Monitoring low cycle fatigue damage in turbine blade using vibration characteristics", Mech. Syst. Sig. Process., 21(1), 480-501. https://doi.org/10.1016/j.ymssp.2005.02.011
  27. Mayer, R.M. (1996), Design of Composite Structures Against Fatigue, Design of Composite Structures Against Fatigue, Great Britain, Antony Rowe Ltd., Effects of Environment, pp. 72-73.
  28. Meththananda, I.M., Parker, S., Patel, M.P. and Braden, M. (2009), "The relationship between Shore hardness of elastomeric dental materials and Young's modulus", Dent. Mater., 25(8), 956-959. https://doi.org/10.1016/j.dental.2009.02.001
  29. Muthukumar, T., Aravinthan, A., Lakshmi, K., Venkatesan, R., Vedaprakash, L. and Doble, M. (2011), "Fouling and stability of polymers and composites in marine environment", Int. Biodeterior. Biodegrad., 65(2), 276-284. https://doi.org/10.1016/j.ibiod.2010.11.012
  30. Natarajan, V. (2005), "Fatigue response of fabric-reinforced polymeric composites", J. Compos. Mater., 39(17), 1541-1559. https://doi.org/10.1177/0021998305051084
  31. Paepegem, W.V. and Degrieck, J. (2002), "A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites", Int. J. Fatigue, 24(7), 747-762. https://doi.org/10.1016/S0142-1123(01)00194-3
  32. Philippidis, T.P. and Vassilopoulos, A.P. (1999), "Fatigue of composite laminates under off-axis loading", Int. J. Fatigue, 21(3), 253-262. https://doi.org/10.1016/S0142-1123(98)00073-5
  33. Poursartip, A. and Beaumont, P.W.R. (1983), A Damage Approach to the Fatigue of Composites, In: (Z. Hashin and C.T. Herakovich Eds.), Mechanics of Composite Materials: Recent Advances, Elsevier Inc., pp. 449-456, UK.
  34. Sakin, R. and Ay, I. (2008), "Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites", Mater. Des., 29(6), 1170-1181. https://doi.org/10.1016/j.matdes.2007.05.005
  35. Sakin, R., Ay, I. and Yaman, R. (2008), "An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials", Mater. Des., 29(1), 212-217. https://doi.org/10.1016/j.matdes.2006.11.006
  36. Selmy, A. I., Azab, N.A. and Abd El-baky, M.A. (2013), "Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis", Compos. Part B, 45(1), 518-527. https://doi.org/10.1016/j.compositesb.2012.08.017
  37. TS-EN-59 (1996), Glass Fiber Reinforced Plastics - The Measurement of Hardness with Barcol Hardness Device (934-1), TS-EN-59, Turkish Standards Institute (TSE), Ankara, Turkey.
  38. Vavouliotis, A., Paipetis, A. and Kostopoulos, V. (2011), "On the fatigue life prediction of CFRP laminates using the Electrical Resistance Change method", Compos. Sci. Technol., 71(5), 630-642. https://doi.org/10.1016/j.compscitech.2011.01.003
  39. Xu, H.H.K., Smith, D.T., Schumacher, G.E., Eichmiller, F.C. and Antonucci, J.M. (2000), "Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites", Dent. Mater., 16(4), 248-254. https://doi.org/10.1016/S0109-5641(00)00014-2

Cited by

  1. Water Jet Erosion Performance of Carbon Fiber and Glass Fiber Reinforced Polymers vol.13, pp.17, 2015, https://doi.org/10.3390/polym13172933
  2. Effects of hostile solutions on the static and dynamic behavior of carbon/epoxy composites vol.55, pp.25, 2015, https://doi.org/10.1177/00219983211020094