• Title/Summary/Keyword: metal calcium

Search Result 269, Processing Time 0.023 seconds

Effects of ATP and ADP on iron uptake in rat heart mitochondria

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.245-252
    • /
    • 2010
  • Iron uptake in mitochondria and fractionated mitochondria compartments was studied to understand iron transport in heart mitochondria. The inner membrane is most active in iron uptake. Mitochondrial uptake was dependent on iron concentration and the amount of mitochondria. Iron transport was inversely proportional to pH in the range of 6.0 to 8.0. Iron transport reached a maximum after 30 min of incubation at $37^{\circ}C$. Iron uptake was inhibited by 1 mM ATP and stimulated by 1 mM ADP. The oxidative phosphorylation inhibitor oligomycin inhibited iron uptake, but rotenone and antimycin A did not. The divalent ions $Mg^{2+}$, $Cu^{2+}$, $Mn^{2+}$, and $Zn^{2+}$ suppressed iron uptake at $10\;{\mu}M$ and stimulated it at 1 mM. The divalent ion $Ca^{2+}$ stimulated iron uptake at $10\;{\mu}M$ and suppressed it at 1 mM, competing with iron. The uptake of calcium was stimulated by 10 to $1000\;{\mu}M$ ATP, while iron uptake was stimulated reciprocally by 10 to $1000\;{\mu}M$ ADP, suggesting that these ions have movements similar to those of ATP and ADP.

Effect of Fertilizer Composed of Dam Suspended Particle Sawdust and Sewage Sludge to Soil Properties and Tree Growth (댐 부유물 톱밥과 하수슬러지를 활용한 부숙질 비료가 수목생장 및 토양특성에 미치는 영향)

  • Ryu, Ji-Hoon;Park, Gwan-Soo;Lee, Hang-Goo;Lee, Sang-Jin;Park, Bum-Hwan;Lee, Jong-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.217-222
    • /
    • 2010
  • This study was conducted to investigate the effect of fertilizer composted of dam suspended particle sawdust and sewage sludge to soil properties and seedling growth. The Betula platyphylla var japonica, Zelkova serrata and Chamaecyparis obtusa were used for this study. The soil organic matter, total nitrogen, phosphorous, exchangeable calcium, magnesium, and potassium were increased with fertilizer treatment. Heavy metal concentration in soil was increased with fertilizer treatment, but the level was very low. With fertilizer treatment, growth, photosynthetic capacity, and chlorophyll concentration of seedling were improved.

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type IV

  • Kim, S.N.;Min, K.K.;Choi, I.H.;Kim, S.W.;Pyo, S.N.;Rhee, D.K.
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.173-177
    • /
    • 1996
  • The Pneumococcus, Streptococcus pneumoniae, has an ample polysaccharide (PS) capsule that is highly antigenic and is the main virulence factor of the organism. The capsular PS is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 4 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based medium were found to support luxuriant growth of pneumococcus type 4 at the same level. Therefore in this study, the Casitone based medium was used to study optimization of the culture condition because of BHI broth's high cost and complex nature. The phase of growth which accomodated maximum PS production was exponential phase. Concentrations of glucose greater than 0.8% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium, copper, and magnesium ions) had adverse effects on growth and PS production. On the other hand, low level aeration and supplementation of 3 mg/l concentration of asparagine, phenylalanine, or threonine were beneficial for increased PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

The Potentiometric Performances of Membrane Electrodes Based on Tetracycline Antibiotics (테트라싸이크린 항생제를 담체로 이용한 막전극의 전위차 특성)

  • Baek, Jong-Gyu;Rhee, In-Sook;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.132-134
    • /
    • 2006
  • The main component governing selectivity in ion-selective electrodes and optodes is the ionophore. For this reason, a member of natural products that possess selective ion-binding properties have long been sought after. By applying this principle, the performance of tetracycline used as neutral carriers for cation selective polymeric membrane electrode was investigated. The cation ion-selective electrode based on tetracycline gave a good Nernstian response of 26.6 mV per decade for calcium ion in the activity range $1x10^{-6}M$ to $1x10^{-2}M$ with and without lipophilic additives. The optimized cation ion-selective membrane electrodes displayed very comparable potentiometric responses to various mono and di-valent cations of alkali and alkaline earth metal ions except $Mg^{2+}$.

Estimation of Alkali Overdosing in a Lime Neutralization Process for Acid Mine Drainage

  • Cheong, Young-Wook;Cho, Dong-Wan;Lee, Jin-Soo;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.109-112
    • /
    • 2022
  • Lime has been used for the neutralization of acidic waste because it is cheap and available in large quantities. The resulting sludge often contains a considerable amount of unreacted lime due to alkali overdosing, even during automatic neutralization processes, which mainly arises from the poor solubility of lime. The sludge cake from lime neutralization of Ilkwang Mine also contained high percentages of calcium and magnesium. The elemental content of the sludge cake was compared with those obtained from a simulation of the lime neutralization facility installed at Ilkwang Mine. A Goldsim® model estimated the degree of lime overdosing to be 19.1% based on the fractions of ferrous oxide. The analysis suggests that resolubilization of aluminum hydroxide could occur in the settling basin, in which pH exceeded 10 due to the continued dissolution of the overdosed lime. The present study demonstrated that chemical analysis of sludge combined with process simulation could provide a reasonable estimate of mass balance and chemistry in a neutralization facility for acid mine drainage.

OPTIMIZATION OF CULTURE CONDITIONS FOR PRODUCTION OF PNEUMOCOCCAL CAPSULAR POLYSACCHARIDE TYPE I

  • Kim, S.N.;K.K. Min;Kim, S.H.;Park, I.H.;Lee, S.H.;S.N. Pyo;D.K. Rhee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.186-186
    • /
    • 1996
  • Streptococcus pneumoniae (pneumococcus), the most common cause of bacterial pneumonia, has an ample polysaccharide(PS) capsule that is highly antigenic and is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 1 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based media were found to support luxuriant growth of pneumococcus type 1 at the same level. Because BHI medium is rather expensive and more complex than the Casitone based media, the Casitone based media was used to study optimization of the culture condition. The phase of growth which accomodated maximum PS production was logarithmic phase. Concentrations of glucose greater than 0.2% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplemention of various concentrations of metal ion (with the exception of calcium ion) had adverse effects on growth and PS production. On the other hand, low level aeration was beneficial for increased PS production. Addition of 3 mg/I concentration of methionine, phenylalanine, and threonine were found to enhance growth and PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil (밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향)

  • Kim, Yong Gyun;Lim, Woo Sup;Hong, Chang Oh;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.262-270
    • /
    • 2014
  • BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

Inhibition of Human Neutrophil Elastase by NSAIDs and Inhibitors, and Molecular Pharmacological Mechanism of the Inhibition (비스테로이드성 항염증제와 효소 억제제에 의한 사람 중성구 Elastase의 활성도 억제 및 분자약리학적 기전)

  • Kang, Koo-Il;Kim, Woo-Mi;Hong, In-Sik;Lee, Moo-Sang
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.425-431
    • /
    • 1996
  • Human neutrophil elastases (HNElastase, EC 3.4.21.37), a causative factor of inflammatory diseases, are regulated by plasma proteinase inhibitors, alpha-proteinase inhibitor and ${\alpha}_2-macroglobulin$. Under certain pathological conditions, however, released enzymes or abnormal function of inhibitors may cause various inflammatory disease. NSAIDs have been clinically applied for treatment of inflammatory diseases. Inhibition of cyclooxygenase is a known mechanism of action of NSAIDs in the treatment of inflammatory disease. In in vitro experiments, HNElastase was inhibited by naproxen, phenylbutazone, and oxyphenbutazone, but ibuprofen, ketoprofen, aspirin, salicylic acid, and tolmetin did not inhibit elastase. HNElastase was also inhibited by chelating agents, EDTA & EGTA, and tetracyclines. Removal of divalent metal ions by EDTA caused inhibition of elastase, and reconstitution of the metal ions recovered the enzyme activity to a certain level. Frequencies and contours in the Raman spectra of various conditions of human neutrophil elastase undergo drastic changes upon partial removal and/or reconstitution of calcium and zinc ions. The metal ion content dependent activities and change of the contour of the Raman spectrogram suggest us that the mechanism of action of a chelator or chelator-like agents on neutrophil elastase may be related to the conformational change at/or near the active site, especially -C=O radical or -COOH radical.

  • PDF

Formation of Environment Friendly Electrodeposition Films by CO2 Gas Dissolved in Seawater and Their Corrosion Resistance (해수 중 CO2 기체의 유입에 의한 환경 친화적인 전착 코팅막의 형성과 그 내식특성)

  • Lee, Sung-Joon;Kim, Hye-Min;Lee, Seul-Gee;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • The peculiar feature of cathodic protection in seawater has the capability to form mineral calcareous deposits such as magnesium and calcium on metal surfaces. It is assumed that $OH^-$ ions are generated close to the metal surface as a result of cathodic protection and generated $OH^-$ ions increases the pH of the metal/seawater interface outlined as the following formulae. (1) $O_2+2H_2O+4e{\rightarrow}4OH^-$, or (2) $2H_2O+2e{\rightarrow}H_2+2OH^-$. And high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the following formulae. (1) $Mg^{2+}+2OH^-{\rightarrow}Mg(OH)_2$, (2) $Ca^{2+}+CO{_3}^{2-}{\rightarrow}CaCO_3$. The focus of this study was to increase the amount of $CO{_3}^{2-}$ with the injection of $CO_2$ gas to the solution for accelerating process of the following formulae. (1) $H_2O+CO_2{\rightarrow}H_2CO_3$, (2) $HCO^{3-}{\rightarrow}{H^+}+CO{_3}^{2-}$. Electrodeposit films were formed by an electro-deposition technique on steel substrates in solutions of both natural seawater and natural seawater dissolved $CO_2$ gas with different current densities, over different time periods. The contents of films were investigated by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The adhesion and corrosion resistance of the coating films were evaluated by anodic polarization. From an experimental result, only $CaCO_3$ were found in solution where injected $CO_2$ gas regardless of current density. In case of injecting the $CO_2$ gas, weight gain of electrodeposits films hugely increased and it had appropriate physical properties.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.