• 제목/요약/키워드: metabolites analysis

검색결과 656건 처리시간 0.022초

GC-MS 기반 대사체학 기술을 응용한 참당귀의 산지비교분석 (Comparative Analysis of Cultivation Region of Angelica gigas Using a GC-MS-Based Metabolomics Approach)

  • 강귀보;임재윤
    • 한국약용작물학회지
    • /
    • 제24권2호
    • /
    • pp.93-100
    • /
    • 2016
  • Background: A set of logical criteria that can accurately identify and verify the cultivation region of raw materials is a critical tool for the scientific management of traditional herbal medicine. Methods and Results: Volatile compounds were obtained from 19 and 32 samples of Angelica gigas Nakai cultivated in Korea and China, respectively, by using steam distillation extraction. The metabolites were identified using GC/MS by querying against the NIST reference library. Data binning was performed to normalize the number of variables used in statistical analysis. Multivariate statistical analyses, such as Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) were performed using the SIMCA-P software. Significant variables with a Variable Importance in the Projection (VIP) score higher than 1.0 as obtained through OPLS-DA and those that resulted in p-values less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Among the 19 variables extracted, styrene, ${\alpha}$-pinene, and ${\beta}$-terpinene were selected as markers to indicate the origin of A. gigas. Conclusions: The statistical model developed was suitable for determination of the geographical origin of A. gigas. The cultivation regions of six Korean and eight Chinese A. gigas. samples were predicted using the established OPLS-DA model and it was confirmed that 13 of the 14 samples were accurately classified.

식물 유전자 연구의 최근 동향 (Current status on plant functional genomics)

  • 조용구;우희종;윤웅한;김홍식;우선희
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.115-124
    • /
    • 2010
  • As the completion of genome sequencing, large collection of expression data and the great efforts in annotating plant genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. Functional genome analysis of plants has entered the high-throughput stage. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. However, to identify the exact function of unknown genes it is necessary to understand each gene's role in the complex orchestration of all gene activities in the plant cell. Gene function analysis therefore necessitates the analysis of temporal and spatial gene expression patterns. The most conclusive information about changes in gene expression levels can be gained from analysis of the varying qualitative and quantitative changes of messenger RNAs, proteins and metabolites. New technologies have been developed to allow fast and highly parallel measurements of these constituents of the cell that make up gene activity. We have reviewed currently employed technologies to identify unknown functions of predicted genes including map-based cloning, insertional mutagenesis, reverse genetics, chemical mutagenesis, microarray analysis, FOX-hunting system, gene silencing mutagenesis, proteomics and chemical genomics. Recent improvements in technologies for functional genomics enable whole-genome functional analysis, and thus open new avenues for studies of the regulations and functions of unknown genes in plants.

Metabolic Profiling of Eccentric Exercise-Induced Muscle Damage in Human Urine

  • Jang, Hyun-Jun;Lee, Jung Dae;Jeon, Hyun-Sik;Kim, Ah-Ram;Kim, Suhkmann;Lee, Ho-Seong;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.199-210
    • /
    • 2018
  • Skeletal muscle can be ultrastructurally damaged by eccentric exercise, and the damage causes metabolic disruption in muscle. This study aimed to determine changes in the metabolomic patterns in urine and metabolomic markers in muscle damage after eccentric exercise. Five men and 6 women aged 19~23 years performed 30 min of the bench step exercise at 70 steps per min at a determined step height of 110% of the lower leg length, and stepping frequency at 15 cycles per min. $^1H$ NMR spectral analysis was performed in urine collected from all participants before and after eccentric exercise-induced muscle damage conventionally determined using a visual analogue scale (VAS) and maximal voluntary contraction (MVC). Urinary metabolic profiles were built by multivariate analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) using SIMCA-P. From the OPLS-DA, men and women were separated 2 hr after the eccentric exercise and the separated patterns were maintained or clarified until 96 hr after the eccentric exercise. Subsequently, urinary metabolic profiles showed distinct trajectory patterns between men and women. Finally, we found increased urinary metabolites (men: alanine, asparagine, citrate, creatine phosphate, ethanol, formate, glucose, glycine, histidine, and lactate; women: adenine) after the eccentric exercise. These results could contribute to understanding metabolic responses following eccentric exercise-induced muscle damage in humans.

팬텀 내 조영제 농도에 따른 뇌 대사물질 Spectrum의 정량분석 (Quantitative Analysis of Brain Metabolite Spectrum Depending on the Concentration of the Contrast Media in Phantom)

  • 신운재;강은보;천송이
    • 한국방사선학회논문지
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2015
  • 본 연구에서 3.0 T에서 조영제 몰 농도에 따른 뇌 대사물질의 MR spectrum을 Phantom에서 PRESS 펄스 파형으로 분석하고자 하였다. 뇌 대사물질인 N-Acetyl Asparatate(NAA), Choline(Cho), Creatine(Cr)의 spectrum은 획득할 수 있었지만, Lactate(Lac)는 획득할 수 없었다. 조영제가 없는 대조군의 TR 2000 ms가 NAA, Cho에서 TR 1700 ms와 TR 1500 ms보다 높게 측정되었고, Cr에서는 TR 1500 ms에서 높게 측정되었다. 조영제가 희석된 TR 1700 ms에서 $0.1mmol/{\ell}$의 NAA 73%, Cho 249%, Cr 37%로 다른 TR 값보다 가장 높게 측정되었고, $0.3mmol/{\ell}$에서도 신호크기가 증가하였다. $0.5mmol/{\ell}$에서는 뇌 대사물질들의 신호크기가 감소하였으며, 특히 TR 1500 ms과 TR 2000 ms에서는 대조군보다도 감소하였다. NAA/Cr, Cho/Cr에서도 조영제 농도가 $0.1mmol/{\ell}$, $0.3mmol/{\ell}$, $0.5mmol/{\ell}$로 증가할수록 신호크기가 감소하였다. 조영제에 의한 MRS PRESS 펄스파형의 적정화를 위하여 3.0T에서 TR 2000 ms 보다 조영제 농도가 낮은 $0.1mmol/{\ell}$$0.3mmol/{\ell}$에서 신호크기가 가장 높고, 조영제 농도가 높은 $0.5mmol/{\ell}$에서는 신호크기가 가장 적게 감소한 TR 1700 ms로 반복시간을 단축시켜 사용하는 것이 유용할 것으로 사료된다.

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents

  • Lee, Sujin;Kang, Sunmi;Park, Sunghyouk
    • 한국자기공명학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-43
    • /
    • 2017
  • Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.

Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis

  • Hong, Sung Wook;Choi, Yun-Jeong;Lee, Hae-Won;Yang, Ji-Hee;Lee, Mi-Ai
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1057-1062
    • /
    • 2016
  • Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341FGC-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

Nuclear Magnetic Resonance (NMR)-Based Quantification on Flavor-Active and Bioactive Compounds and Application for Distinguishment of Chicken Breeds

  • Kim, Hyun Cheol;Yim, Dong-Gyun;Kim, Ji Won;Lee, Dongheon;Jo, Cheorun
    • 한국축산식품학회지
    • /
    • 제41권2호
    • /
    • pp.312-323
    • /
    • 2021
  • The purpose of this study was to use 1H nuclear magnetic resonance (1H NMR) to quantify taste-active and bioactive compounds in chicken breasts and thighs from Korean native chicken (KNC) [newly developed KNCs (KNC-A, -C, and -D) and commercial KNC-H] and white-semi broiler (WSB) used in Samgye. Further, each breed was differentiated using multivariate analyses, including a machine learning algorithm designed to use metabolic information from each type of chicken obtained using 1H-13C heteronuclear single quantum coherence (2D NMR). Breast meat from KNC-D chickens were superior to those of conventional KNC-H and WSB chickens in terms of both taste-active and bioactive compounds. In the multivariate analysis, meat portions (breast and thigh) and chicken breeds (KNCs and WSB) could be clearly distinguished based on the outcomes of the principal component analysis and partial least square-discriminant analysis (R2=0.945; Q2=0.901). Based on this, we determined the receiver operating characteristic (ROC) curve for each of these components. AUC analysis identified 10 features which could be consistently applied to distinguish between all KNCs and WSB chickens in both breast (0.988) and thigh (1.000) meat without error. Here, both 1H NMR and 2D NMR could successfully quantify various target metabolites which could be used to distinguish between different chicken breeds based on their metabolic profile.

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.

Purification and Characterization of the Rat Liver CYP2D1 and Utilization of Reconstituted CYP2D1 in Caffeine Metabolism

  • Chung, Woon-Gye;Cho, Myung-Haing;Cha, Young-Nam
    • Toxicological Research
    • /
    • 제13권1_2호
    • /
    • pp.117-125
    • /
    • 1997
  • In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.

  • PDF

Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

  • Murillo, M.;Herrera, E.;Ruiz, O.;Reyes, O.;Carrete, F.O.;Gutierrez, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.666-673
    • /
    • 2016
  • Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers ($204{\pm}5kg$ initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers ($BW=350{\pm}3kg$) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen ($NH_3$-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.