References
- Stauber, W.T. (1989) Eccentric action of muscles: physiology, injury, and adaptation. Exerc. Sport Sci. Rev., 17, 157-185.
- Brown, S., Day, S. and Donnelly, A. (1999) Indirect evidence of human skeletal muscle damage and collagen breakdown after eccentric muscle actions. J. Sports Sci., 17, 397-402. https://doi.org/10.1080/026404199365911
- Woledge, R.C., Curtin, N.A. and Homsher, E. (1985) Energetic aspects of muscle contraction. Monogr. Physiol. Soc., 41, 1-357.
- Bigland-Ritchie, B. and Woods, J.J. (1974) Integrated EMG and oxygen uptake during dynamic contractions of human muscles. J. Appl. Physiol., 36, 475-479. https://doi.org/10.1152/jappl.1974.36.4.475
- McCully, K.K. and Faulkner, J.A. (1986) Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J. Appl. Physiol., 61, 293-299. https://doi.org/10.1152/jappl.1986.61.1.293
- Tee, J.C., Bosch, A.N. and Lambert, M.I. (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med., 37, 827-836. https://doi.org/10.2165/00007256-200737100-00001
- Byrne, C., Twist, C. and Eston, R. (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med., 34, 49-69. https://doi.org/10.2165/00007256-200434010-00005
- Asp, S., Daugaard, J.R. and Richter, E.A. (1995) Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol., 482, 705-712. https://doi.org/10.1113/jphysiol.1995.sp020553
- Asp, S., Rohde, T. and Richter, E.A. (1997) Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. J. Appl. Physiol., 83, 1482-1485. https://doi.org/10.1152/jappl.1997.83.5.1482
- Asp, S., Daugaard, J.R., Kristiansen, S., Kiens, B., Richter, E.A. (1998) Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise. J. Physiol., 509, 305-313. https://doi.org/10.1111/j.1469-7793.1998.305bo.x
- Asp, S., Daugaard, J.R., Rohde, T., Adamo, K. and Graham, T. (1999) Muscle glycogen accumulation after a marathon: roles of fiber type and pro- and macroglycogen. J. Appl. Physiol., 86, 474-478. https://doi.org/10.1152/jappl.1999.86.2.474
- Costill, D.L., Pascoe, D.D., Fink, W.J., Robergs, R.A., Barr, S.I. and Pearson, D. (1990) Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol., 69, 46-50. https://doi.org/10.1152/jappl.1990.69.1.46
- Evans, W.J., Meredith, C.N., Cannon, J.G., Dinarello, C.A., Frontera, W.R., Hughes, V.A., Jones, B.H. and Knuttgen, H.G. (1986) Metabolic changes following eccentric exercise in trained and untrained men. J. Appl. Physiol., 61, 1864-1868. https://doi.org/10.1152/jappl.1986.61.5.1864
- Kirwan, J.P., Hickner, R.C., Yarasheski, K.E., Kohrt, W.M., Wiethop, B.V. and Holloszy, J.O. (1992) Eccentric exercise induces transient insulin resistance in healthy individuals. J. Appl. Physiol., 72, 2197-2202.
- Nosaka, K. and Clarkson, P.M. (1995) Muscle damage following repeated bouts of high force eccentric exercise. Med. Sci. Sports Exerc., 27, 1263-1269.
- Selkow, N.M., Day, C., Liu, Z., Hart, J.M., Hertel, J. and Saliba, S.A. (2012) Microvascular perfusion and intramuscular temperature of the calf during cooling. Med. Sci. Sports Exerc., 44, 850-856. https://doi.org/10.1249/MSS.0b013e31823bced9
- Semark, A., Noakes, T.D., St Clair, G.A. and Lambert, M.I. (1999) The effect of a prophylactic dose of flurbiprofen on muscle soreness and sprinting performance in trained subjects. J. Sports Sci., 17, 197-203. https://doi.org/10.1080/026404199366091
- Sorichter, S., Puschendorf, B. and Mair, J. (1999) Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev., 5, 5-21.
- Tuominen, J.A., Ebeling, P., Bourey, R., Koranyi, L., Lamminen, A., Rapola, J., Sane, T., Vuorinen-Markkola, H. and Koivisto, V.A. (1996) Postmarathon paradox: insulin resistance in the face of glycogen depletion. Am. J. Physiol., 270, E336-E343.
- Brancaccio, P., Lippi, G. and Maffulli, N. (2010) Biochemical markers of muscular damage. Clin. Chem. Lab. Med., 48, 757-767.
- Miles, M.P., Andring, J.M., Pearson, S.D., Gordon, L.K., Kasper, C., Depner, C.M. and Kidd, J.R. (2008) Diurnal variation, response to eccentric exercise, and association of inflammatory mediators with muscle damage variables. J. Appl. Physiol., 104, 451-458. https://doi.org/10.1152/japplphysiol.00572.2007
- Oosterom, D.L. and Betjes, M.G. (2006) Exertion-related abnormalities in the urine. Ned. Tijdschr. Geneeskd., 150, 606-610.
- Chung, Y.L., Rider, L.G., Bell, J.D., Summers, R.M., Zemel, L.S., Rennebohm, R.M., Passo, M.H., Hicks, J., Miller, F.W. and Scott, D.L. (2005) Juvenile dermatomyositis disease activity collaborative study G. Muscle metabolites, detected in urine by proton spectroscopy, correlate with disease damage in juvenile idiopathic inflammatory myopathies. Arthritis Rheum., 53, 565-570. https://doi.org/10.1002/art.21331
- Huerta-Alardin, A.L., Varon, J. and Marik, P.E. (2005) Bench-to-bedside review: rhabdomyolysis -- an overview for clinicians. Crit. Care, 9, 158-169. https://doi.org/10.1186/cc3221
- Khan, F.Y. (2009) Rhabdomyolysis: a review of the literature. Neth. J. Med., 67, 272-283.
- Duchen, M.R., Valdeolmillos, M., O'Neill, S.C. and Eisner, D.A. (1990) Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J. Physiol., 424, 411-426. https://doi.org/10.1113/jphysiol.1990.sp018074
- Duncan, C.J. (1987) Role of calcium in triggering rapid ultrastructural damage in muscle: a study with chemically skinned fibres. J. Cell Sci., 87, 581-594.
- Armstrong, R.B., Warren, G.L. and Warren, J.A. (1991) Mechanisms of exercise-induced muscle fibre injury. Sports Med., 12, 184-207. https://doi.org/10.2165/00007256-199112030-00004
-
Busch, W.A., Stromer, M.H., Goll, D.E. and Suzuki, A. (1972)
$Ca^{2+}$ -specific removal of Z lines from rabbit skeletal muscle. J. Cell Biol., 52, 367-381. https://doi.org/10.1083/jcb.52.2.367 - Baird, M.F., Graham, S.M., Baker, J.S. and Bickerstaff, G.F. (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab., 2012, 960363.
- Barding, G.A., Jr., Salditos, R. and Larive, C.K. (2012) Quantitative NMR for bioanalysis and metabolomics. Anal. Bioanal. Chem., 404, 1165-1179. https://doi.org/10.1007/s00216-012-6188-z
- Jordan, K.W., Nordenstam, J., Lauwers, G.Y., Rothenberger, D.A., Alavi, K., Garwood, M. and Cheng, L.L. (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis. Colon. Rectum., 52, 520-525. https://doi.org/10.1007/DCR.0b013e31819c9a2c
- Ra, S.G., Maeda, S., Higashino, R., Imai, T. and Miyakawa, S. (2014) Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl. Physiol. Nutr. Metab., 39, 1120-1126. https://doi.org/10.1139/apnm-2013-0546
- Hicks, K.M., Onambele, G.L., Winwood, K. and Morse, C.I. (2016) Muscle damage following maximal eccentric knee extensions in males and females. PLoS ONE, 11, e0150848. https://doi.org/10.1371/journal.pone.0150848
- Newham, D.J., Jones, D.A. and Edwards, R.H. (1983) Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve, 6, 380-385. https://doi.org/10.1002/mus.880060507
- Vissing, K., Overgaard, K., Nedergaard, A., Fredsted, A. and Schjerling, P. (2008) Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle. Eur. J. Appl. Physiol., 103, 323-332. https://doi.org/10.1007/s00421-008-0709-7
- Wilson, J.M., Kim, J.S., Lee, S.R., Rathmacher, J.A., Dalmau, B., Kingsley, J.D., Koch, H., Manninen, A.H., Saadat, R. and Panton, L.B. (2009) Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr. Metab. (Lond), 6, 6. https://doi.org/10.1186/1743-7075-6-6
- Baroni, B.M., Leal Junior, E.C., De Marchi, T., Lopes, A.L., Salvador, M. and Vaz, M.A. (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur. J. Appl. Physiol., 110, 789-796. https://doi.org/10.1007/s00421-010-1562-z
- Selkow, N.M., Herman, D.C., Liu, Z., Hertel, J., Hart, J.M. and Saliba, S.A. (2015) Blood flow after exercise-induced muscle damage. J. Athl. Train, 50, 400-406. https://doi.org/10.4085/1062-6050-49.6.01
- Twist, C. and Eston, R.G. (2009) The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance. Eur. J. Appl. Physiol., 105, 559-567. https://doi.org/10.1007/s00421-008-0935-z
- Chen, T.C., Lin, K.Y., Chen, H.L., Lin, M.J. and Nosaka, K. (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur. J. Appl. Physiol., 111, 211-223. https://doi.org/10.1007/s00421-010-1648-7
- Penailillo, L., Blazevich, A., Numazawa, H. and Nosaka, K. (2015) Rate of force development as a measure of muscle damage. Scand. J. Med. Sci. Sports, 25, 417-427. https://doi.org/10.1111/sms.12241
- Clarkson, P.M. and Hubal, M.J. (2002) Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil., 81, S52-S69. https://doi.org/10.1097/00002060-200211001-00007
- Rinard, J., Clarkson, P.M., Smith, L.L. and Grossman, M. (2000) Response of males and females to high-force eccentric exercise. J. Sports Sci., 18, 229-236. https://doi.org/10.1080/026404100364965
- Ruoppolo, M., Scolamiero, E., Caterino, M., Mirisola, V., Franconi, F. and Campesi, I. (2015) Female and male human babies have distinct blood metabolomic patterns. Mol. Biosyst., 11, 2483-2492. https://doi.org/10.1039/C5MB00297D
- Tso, V.K., Sydora, B.C., Foshaug, R.R., Churchill, T.A., Doyle, J., Slupsky, C.M. and Fedorak, R.N. (2013) Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS ONE, 8, e67654. https://doi.org/10.1371/journal.pone.0067654
- Dieli-Conwright, C.M., Spektor, T.M., Rice, J.C., Sattler, F.R. and Schroeder, E.T. (2009) Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J. Appl. Physiol., 107, 853-858. https://doi.org/10.1152/japplphysiol.00404.2009
- Saks, V. (2008) The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive. J. Physiol., 586, 2817-2818. https://doi.org/10.1113/jphysiol.2008.155358
- Vigelso, A., Andersen, N.B. and Dela, F. (2014) The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol., 6, 84-101.
- Koopman, R., Ly, C.H. and Ryall, J.G. (2014) A metabolic link to skeletal muscle wasting and regeneration. Front Physiol., 5, 32.
- Powers, S.K. and Jackson, M.J. (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev., 88, 1243-1276. https://doi.org/10.1152/physrev.00031.2007
- Reid, M.B., Shoji, T., Moody, M.R. and Entman, M.L. (1992) Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J. Appl. Physiol., 73, 1805-1809. https://doi.org/10.1152/jappl.1992.73.5.1805
- Son, D.O., Satsu, H. and Shimizu, M. (2005) Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett., 579, 4671-4677. https://doi.org/10.1016/j.febslet.2005.07.038
- Tidball, J.G. (2005) Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, R345-R353. https://doi.org/10.1152/ajpregu.00454.2004
- Mangino, M.J., Murphy, M.K., Grabau, G.G. and Anderson, C.B. (1991) Protective effects of glycine during hypothermic renal ischemia-reperfusion injury. Am. J. Physiol., 261, F841-F848.
- Rush, G.F. and Ponsler, G.D. (1991) Cephaloridine-induced biochemical changes and cytotoxicity in suspensions of rabbit isolated proximal tubules. Toxicol. Appl. Pharmacol., 109, 314-326. https://doi.org/10.1016/0041-008X(91)90178-H
- Ascher, E., Hanson, J.N., Cheng, W., Hingorani, A. and Scheinman, M. (2001) Glycine preserves function and decreases necrosis in skeletal muscle undergoing ischemia and reperfusion injury. Surgery, 129, 231-235. https://doi.org/10.1067/msy.2001.112594
- Ham, D.J., Murphy, K.T., Chee, A., Lynch, G.S. and Koopman, R. (2014) Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin. Nutr., 33, 448-458. https://doi.org/10.1016/j.clnu.2013.06.013
- Becker, A., Fritz-Wolf, K., Kabsch, W., Knappe, J., Schultz, S. and Volker Wagner, A.F. (1999) Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat. Struct. Biol., 6, 969-975. https://doi.org/10.1038/13341
- Dashko, S., Zhou, N., Compagno, C. and Piskur, J. (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res., 14, 826-832. https://doi.org/10.1111/1567-1364.12161
- Doi, Y. and Ikegami, Y. (2014) Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilizationin the Enterococcus faecalis strain W11. J. Bacteriol.,196, 2472-2480. https://doi.org/10.1128/JB.01512-14
Cited by
- 1H NMR toxicometabolomics following cisplatin-induced nephrotoxicity in male rats vol.44, pp.1, 2019, https://doi.org/10.2131/jts.44.57