• 제목/요약/키워드: metabolite profiling

검색결과 87건 처리시간 0.026초

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

  • Jung, Jee-Youn;Kim, Il-Yong;Kim, Yo-Na;Kim, Jin-Sup;Shin, Jae-Hoon;Jang, Zi-Hey;Lee, Ho-Sub;Hwang, Geum-Sook;Seong, Je-Kyung
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.419-424
    • /
    • 2012
  • High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.

Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

  • Jung, Sung-Min;Hur, Youn-Young;Preece, John E.;Fiehn, Oliver;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.489-499
    • /
    • 2016
  • Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

Identification of bioactive components behind the antimicrobial activity of cow urine by peptide and metabolite profiling

  • Rohit Kumar;Jai Kumar Kaushik;Ashok Kumar Mohanty;Sudarshan Kumar
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1130-1142
    • /
    • 2023
  • Objective: Cow urine possesses several bioactive properties but the responsible components behind these bioactivities are still far from identified. In our study, we tried to identify the possible components behind the antimicrobial activity of cow urine by exploring the peptidome and metabolome. Methods: We extracted peptides from the urine of Sahiwal cows belonging to three different physiological states viz heifer, lactation, and pregnant, each group consisting of 10 different animals. The peptides were extracted using the solid phase extraction technique followed by further extraction using ethyl acetate. The antimicrobial activity of the aqueous extract was evaluated against different pathogenic strains like Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. The safety of urinary aqueous extract was evaluated by hemolysis and cytotoxicity assay on the BuMEC cell line. The urinary peptides were further fractionated using high-performance liquid chromatography (HPLC) to identify the fraction(s) containing the antimicrobial activity. The HPLC fractions and ethyl acetate extract were analyzed using nLC-MS/MS for the identification of the peptides and metabolites. Results: A total of three fractions were identified with antimicrobial activity, and nLC-MS/MS analysis of fractions resulted in the identification of 511 sequences. While 46 compounds were identified in the metabolite profiling of organic extract. The urinary aqueous extract showed significant activity against E. coli as compared to S. aureus and S. agalactiae and was relatively safe against mammalian cells. Conclusion: The antimicrobial activity of cow urine is a consequence of the feeding habit. The metabolites of plant origin with several bioactivities are eliminated through urine and are responsible for their antimicrobial nature. Secondly, the plethora of peptides generated from the activity of endogenous proteases on protein shed from different parts of tissues also find their way to urine. Some of these sequences possess antimicrobial activity due to their amino acid composition.

천연물 연구에서의 메타볼로믹스 (Metabolomics in Natural Products Research)

  • 서찬;김태수;김보람;성수희;김진호;이하늘;임수아;김정은;정지민;정진우
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.16-16
    • /
    • 2023
  • Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under a given set of conditions. Metabolomics has its roots in early metabolite profiling studies but is now a rapidly expanding area of scientific research in its own right. In this study, the applications of metabolomics in natural product studies are explored. Ginseng is a well-known herbal medicine and has various pharmacological effects, which include antiaging, anticancer, antifatigue, memory enhancing, immunomodulatory, and stress reducing effects. Metabolomic analysis of organic acids has not been performed for evaluation whether ginseng has been cultivated using conventional or environmental-friendly farming methods. In this study, profiling analysis was conducted for organic acids (OAs) in ginseng roots produced using conventional or environmentfriendly farming methods at five locations in each of five regions. In OA profiles, lactic acid was the most abundant OA in all regions, with the exception for environmentally friendly farmed ginseng in two of the five regions, in which glycolic acid was most abundant OA. OA profiles in all regions showed isocitric acid levels were increased by environment-friendly cultivation, which suggests metabolic differences associated from farming method, and that isocitric acid might be a useful discriminatory biomarker of environmental-friendly and conventional cultivation. The results of the present study suggest metabolomic studies of OAs in ginseng roots might be useful for monitoring whether ginseng has been cultivated using conventional or environmentally friendly farming methods.

  • PDF

GC/MS를 이용한 요 중 resveratrol과 그 대사체에 관한 연구 (Studies on resveratrol and its metabolite in human urine by GC/MS)

  • 정현주;팽기정;김연제
    • 분석과학
    • /
    • 제24권2호
    • /
    • pp.142-149
    • /
    • 2011
  • Resveratrol을 GC/TOF-MS를 이용하여 대사체를 확인한 결과, 두 개의 phenyl기를 연결하는 이중결합이 단일결합으로 환원된 구조로 추정되었다. 또한, GC/MSD를 이용하여 resveratrol 및 내인성스테로이드의 분석법에 대한 유효성을 점검한 결과, 회수율은 96.47 - 114.74%의 범위로 나타났으며, intra-day와 inter-day의 정밀도는 1.40 - 10.87%과 1.10 - 10.93% 그리고 정확도는 80.03 - 119.92%과 80.02 - 119.56%로 조사되었고, 모두 0.996이상의 직선성을 나타내어 유효한 분석 방법으로 검증되었다. 한편, 지원자들에게 resveratrol을 경구투여 한 요시료로부터 resveratrol과 그 대사체에 대한 상관성을 조사해본 결과, 요중 최대농도 도달시간이 일반적인 약물(1 - 2시간) 보다 긴 10 - 15시간에 나타났으며, 대사체로의 전환율은 남성보다 여성이 높게 나타났다. 한편, 내인성 스테로이드는 약물 복용 후 20시간 까지는 resveratrol 및 그 대사체와 다소 유사한 분비형태를 나타내었으며, estrone과 estradiol의 경우 여성이 남성에 비해 이 약물에 대한 민감성이 높게 나타났다. 그 외의 내인성 스테로이드는 유의할만한 차별된 분비형태의 변화가 나타나지 않았다. 따라서 resveratrol의 경우 약물의 활성이 남성보다는 여성에게 유의한 영향을 미치는 것으로 추측되었다.

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Chlamydomonas reinhardtii

  • Jang, Cheol-Ho;Lee, Gayeon;Park, Yong-Cheol;Kim, Kyoung Heon;Lee, Do Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1150-1156
    • /
    • 2017
  • Understanding phosphorus metabolism in photosynthetic organisms is important as it is closely associated with enhanced crop productivity and pollution management for natural ecosystems (e.g., algal blooming). Accordingly, we exploited highly time-resolved metabolic responses to different levels of phosphate deprivation in Chlamydomonas reinhardtii, a photosynthetic model organism. We conducted non-targeted primary metabolite profiling using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we systematically identified main contributors to degree-wise responses corresponding to the levels of phosphate deprivation. Additionally, we systematically characterized the metabolite sets specific to different phosphate conditions and their interactions with culture time. Among them were various types of fatty acids that were most dynamically modulated by the phosphate availability and culture time in addition to phosphorylated compounds.

Stress Adaptation of Escherichia coli as Monitored via Metabolites by Using Two-Dimensional NMR Spectroscopy

  • Chae, Young Kee;Kim, Seol Hyun
    • 한국자기공명학회논문지
    • /
    • 제21권3호
    • /
    • pp.102-108
    • /
    • 2017
  • Escherichia coli responds to ever-changing external and internal stresses by rapidly adjusting its physiology for better survival. This adjustment occurs at all levels including metabolites as well as mRNAs and proteins. Although there has been many reports describing E. coli's adaptation to various stresses regarding transcriptomics or proteomics, only a few investigations have been reported regarding this adaptation viewed from metabolites' perspective. We applied four different types of stresses at four different doses as imposed by NaCl, sorbitol, ethanol, and pH to investigate the similarities or differences among the stresses, and which stress causes the largest perturbation of the metabolite composition. We profiled the metabolites under such external stresses by using two-dimensional NMR spectroscopy and identified 39 metabolites including amino acids, sugars, organic acids, and nucleic acids. According to our statistical analysis, the osmotic stress caused by sorbitol differentiated itself from others, while NaCl showed the largest dose dependent metabolic perturbations. We hope this work will form a foundation on which an approach to a successful protein production is systematically provided by a favorable metabolic environment by imposing proper external stresses.