DOI QR코드

DOI QR Code

Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

  • Jung, Sung-Min (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Hur, Youn-Young (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Preece, John E. (National Clonal Germplasm Repository, United States Department of Agriculture-Agricultural Research Service (USDA-ARS)) ;
  • Fiehn, Oliver (Department of Molecular and Cellular Biology and Genome Center, University of California) ;
  • Kim, Young-Ho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2016.08.05
  • Accepted : 2016.10.05
  • Published : 2016.12.01

Abstract

Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Academic Press, San Diego, CA, USA. 922 pp.
  2. Aloni, R., Pradel, K. S. and Ullrich, C. I. 1995. The threedimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. Planta 196:597-605.
  3. Aloni, R., Wolf, A., Feigenbaum, P., Avni, A. and Klee, H. J. 1998. The never ripe mutant provides evidence that tumorinduced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol. 117:841-849. https://doi.org/10.1104/pp.117.3.841
  4. Azizan, K. A., Baharum, S. N., Ressom, H. W. and Noor, N. M. 2012. GC-MS analysis and PLS-DA validation of the trimethyl silyl-derivatization techniques. Am. J. Applied Sci. 9:1124-1136. https://doi.org/10.3844/ajassp.2012.1124.1136
  5. Browne, R. A. and Brindle, K. M. 2007. 1H NMR-based metabolite profiling as a potential selection tool for breeding passive resistance against Fusarium head blight (FHB) in wheat. Mol. Plant Pathol. 8:401-410. https://doi.org/10.1111/j.1364-3703.2007.00400.x
  6. Burr, T. J. and Otten, L. 1999. Crown gall of grape: biology and disease management. Annu. Rev. Phytopathol. 37:53-80. https://doi.org/10.1146/annurev.phyto.37.1.53
  7. Burr, T. J., Reid, C. L., Adams, C. E. and Momol, E. A. 1999. Characterization of Agrobacterium vitis strains isolated from feral Vitis riparia. Plant Dis. 83:102-107. https://doi.org/10.1094/PDIS.1999.83.2.102
  8. Cangelosi, G. A., Ankenbauer, R. G. and Nester, E. W. 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. U. S. A. 87:6708-6712. https://doi.org/10.1073/pnas.87.17.6708
  9. Chong, I. G. and Jun, C. H. 2005. Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab. Syst. 78:103-112. https://doi.org/10.1016/j.chemolab.2004.12.011
  10. Deeken, R., Engelmann, J. C., Efetova, M., Czirjak, T., Muller, T., Kaiser, W. M., Tietz, O., Krischke, M., Mueller, M. J., Palme, K., Dandekar, T. and Hedrich, R. 2006. An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617-3634. https://doi.org/10.1105/tpc.106.044743
  11. Dercks, W. and Creasy, L. L. 1989. The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol. Mol. Plant Pathol. 34:189-202. https://doi.org/10.1016/0885-5765(89)90043-X
  12. Dhingra, O. D. and Sinclair, J. B. 1985. Basic plant pathology methods. CRC Press Inc., Boca Raton, FL, USA. 355 pp.
  13. Ehrhardt, C., Arapitsas, P., Stefanini, M., Flick, G. and Mattivi, F. 2014. Analysis of the phenolic composition of fungusresistant grape varieties cultivated in Italy and Germany using UHPLC-MS/MS. J. Mass Spectrom. 49:860-869. https://doi.org/10.1002/jms.3440
  14. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C. and Wold, S. 2006. Multi- and megavariate data analysis. Umetrics AB, Umea, Sweden.
  15. Favaron, F., Lucchetta, M., Odorizzi, S., Pais da Cunha, A. T. and Sella, L. 2009. The role of grape polyphenols on transresveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J. Plant Pathol. 91:579-588.
  16. Ferreira, J. H. S. and van Zyl, F. G. H. 1986. Susceptibility of grape-vine rootstocks to strains of Agrobacterium tumefaciens biovar 3. South Afr. J. Enol. Vitic. 7:101-104.
  17. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N. and Willmitzer, L. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157-1161. https://doi.org/10.1038/81137
  18. Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee, D. Y., Lu, Y., Moon, S. and Nikolau, B. 2008. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 53:691-704. https://doi.org/10.1111/j.1365-313X.2007.03387.x
  19. Fremont, L. 2000. Biological effects of resveratrol. Life Sci. 66:663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
  20. Gatto, P., Vrhovsek, U., Muth, J., Segala, C., Romualdi, C., Fontana, P., Pruefer, D., Stefanini, M., Moser, C., Mattivi, F. and Velasco, R. 2008. Ripening and genotype control stilbene accumulation in healthy grapes. J. Agric. Food Chem. 56:11773-11785. https://doi.org/10.1021/jf8017707
  21. Gelvin, S. B. 2010. Plant proteins involved in Agrobacteriummediated genetic transformation. Annu. Rev. Phytopathol. 48:45-68. https://doi.org/10.1146/annurev-phyto-080508-081852
  22. Gohlke, J. and Deeken, R. 2014. Plant responses to Agrobacterium tumefaciens and crown gall development. Front. Plant Sci. 5:155.
  23. Kaewnum, S., Zheng, D., Reid, C. L., Johnson, K. L., Gee, J. C. and Burr, T. J. 2013. A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics. Phytopathology 103:427-435. https://doi.org/10.1094/PHYTO-07-12-0153-R
  24. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S. and Fiehn, O. 2009. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81:10038-10048. https://doi.org/10.1021/ac9019522
  25. Knapp, D. R. 1979. Handbook of analytical derivatization reaction. Wiley & Sons, New York, NY, USA. 741 pp.
  26. Kuczmog, A., Galambos, A., Horvath, S., Matai, A., Kozma, P., Szegedi, E. and Putnoky, P. 2012. Mapping of crown gall resistance locus Rcg1 in grapevine. Theor. Appl. Genet. 125:1565-1574. https://doi.org/10.1007/s00122-012-1935-2
  27. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. and Fernie, A. R. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1:387-396. https://doi.org/10.1038/nprot.2006.59
  28. Mahmoodzadeh, H., Nazemieh, A., Majidi, I., Paygami, I. and Khalighi, A. 2004. Evaluation of crown gall resistance in Vitis vinifera and hybrids of Vitis spp. Vitis 43:75-79.
  29. Malsy, S., van Bel, Kluge, M., Hartung, W. and Ullrich, C. I. 1992. Induction of crown galls by Agrobacterium tumefaciens (strain C58) reverses assimilate translocation and accumulation in Kalanchoe daigremontiana. Plant Cell Environ. 15:519-529. https://doi.org/10.1111/j.1365-3040.1992.tb01485.x
  30. Mattivi, F., Reniero, F. and Korhammer, S. 1995. Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J. Agric. Food Chem. 43:1820-1823. https://doi.org/10.1021/jf00055a013
  31. Mistrik, I., Pavlovkin, J., Wachter, R., Pradel, K. S., Schwalm, K., Hartung, W., Mathesius, U., Stohr, C. and Ullrich, C. I. 2000. Impact of Agrobacterium tumefaciens-induced stem tumors on $NO_3^^-$ uptake in Ricinus communis. Plant Soil 226:87-98. https://doi.org/10.1023/A:1026465606865
  32. Morris, R. O. 1986. Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu. Rev. Plant Physiol. 37:509-538. https://doi.org/10.1146/annurev.pp.37.060186.002453
  33. Panagopoulos, C. G. and Psallidas, P. G. 1973. Characteristics of Greek isolates of Agrobacterium tumefaciens (E. F. Smith & Townsend) Conn. J. Appl. Bacteriol. 36:233-240. https://doi.org/10.1111/j.1365-2672.1973.tb04096.x
  34. Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2:559-572. https://doi.org/10.1080/14786440109462720
  35. Pierce, A. E. 1968. Silylation of organic compounds. Pierce Chemical Company, Rockford, IL, USA. 487 pp.
  36. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N. and Willmitzer, L. 2000. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23:131-142. https://doi.org/10.1046/j.1365-313x.2000.00774.x
  37. Roh, J. H., Yun, H. K., Park, K. S., Lee, C. H. and Jeong, S. B. 2003. In vivo evaluation of resistance of grape varieties to crown gall disease. Plant Pathol. J. 19:235-238. https://doi.org/10.5423/PPJ.2003.19.5.235
  38. Salomone, J., Crouzet, P., De Ruffray, P. and Otten, L. 1996. Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol. Plant-Microbe Interact. 9:401-408. https://doi.org/10.1094/MPMI-9-0401
  39. Schroth, M. N., McCain, A. H., Foott, J. H. and Huisman, O. C. 1988. Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Dis. 72:241-246. https://doi.org/10.1094/PD-72-0241
  40. Seifi, H. S., Van Bockhaven, J., Angenon, G. and Hofte, M. 2013. Glutamate metabolism in plant disease and defense:friend or foe? Mol. Plant-Microbe Interact. 26:475-485. https://doi.org/10.1094/MPMI-07-12-0176-CR
  41. Smits, S. H., Mueller, A., Schmitt, L. and Grieshaber, M. K. 2008. A structural basis for substrate selectivity and stereoselectivity in octopine dehydrogenase from Pecten maximus. J. Mol. Biol. 381:200-211. https://doi.org/10.1016/j.jmb.2008.06.003
  42. Stover, E. W., Swartz, H. J. and Burr, T. J. 1997. Crown gall formation in a diverse collection of Vitis genotypes inoculated with Agrobacterium vitis. Am. J. Enol. Vitic. 48:26-32.
  43. Sule, S. and Burr, T. J. 1998. The effect of resistance of root-stocks to crown gall (Agrobacterium spp.) on the susceptibility of scions in grapevine cultivars. Plant Pathol. 47:84-88. https://doi.org/10.1046/j.1365-3059.1998.00205.x
  44. Sule, S., Mozsar, J. and Burr, T. J. 1994. Crown gall resistance of Vitis spp. and grapevine rootstocks. Phytopathology 84:607-611. https://doi.org/10.1094/Phyto-84-607
  45. Szegedi, E., Korbuly, J. and Koleda, I. 1984. Crown gall resistance in East-Asian Vitis species and in their V. vinifera hybrids. Vitis 23:21-26.
  46. Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. and Van der Werf, M. J. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom. 7:142. https://doi.org/10.1186/1471-2164-7-142
  47. Wallis, C. M. and Chen, J. 2012. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa. Phytopathology 102:816-826. https://doi.org/10.1094/PHYTO-04-12-0074-R
  48. Wallis, C. M., Wallingford, A. K. and Chen, J. 2013. Effects of cultivar, phenology, and Xylella fastidiosa infection on grapevine xylem sap and tissue phenolic content. Physiol. Mol. Plant Pathol. 84:28-35. https://doi.org/10.1016/j.pmpp.2013.06.005
  49. Warren, C. R. 2013. Use of chemical ionization for GC-MS metabolite profiling. Metabolomics 9:S110-S120. https://doi.org/10.1007/s11306-011-0346-8
  50. Wasson, A. P., Pellerone, F. I. and Mathesius, U. 2006. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617-1629. https://doi.org/10.1105/tpc.105.038232
  51. Wasson, A. P., Ramsay, K., Jones, M. G. and Mathesius, U. 2009. Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. New Phytol. 183:167-179. https://doi.org/10.1111/j.1469-8137.2009.02850.x
  52. Westerhuis, J. A., Van Velzen, E. J., Hoefsloot, H. C. and Smilde, A. K. 2010. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6:119-128. https://doi.org/10.1007/s11306-009-0185-z
  53. Wold, S., Sjostroma, M. and Eriksson, L. 2001. PLS-regression:a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109-130. https://doi.org/10.1016/S0169-7439(01)00155-1
  54. Zauner, S., Creasap, J. E., Burr, T. J. and Ullrich, C. I. 2006. Inhibition of crown gall induction by Agrobacterium vitis strain F2/5 in grapevine and Ricinus. Vitis 45:131-139.