DOI QR코드

DOI QR Code

Stress Adaptation of Escherichia coli as Monitored via Metabolites by Using Two-Dimensional NMR Spectroscopy

  • Received : 2017.08.10
  • Accepted : 2017.09.10
  • Published : 2017.09.20

Abstract

Escherichia coli responds to ever-changing external and internal stresses by rapidly adjusting its physiology for better survival. This adjustment occurs at all levels including metabolites as well as mRNAs and proteins. Although there has been many reports describing E. coli's adaptation to various stresses regarding transcriptomics or proteomics, only a few investigations have been reported regarding this adaptation viewed from metabolites' perspective. We applied four different types of stresses at four different doses as imposed by NaCl, sorbitol, ethanol, and pH to investigate the similarities or differences among the stresses, and which stress causes the largest perturbation of the metabolite composition. We profiled the metabolites under such external stresses by using two-dimensional NMR spectroscopy and identified 39 metabolites including amino acids, sugars, organic acids, and nucleic acids. According to our statistical analysis, the osmotic stress caused by sorbitol differentiated itself from others, while NaCl showed the largest dose dependent metabolic perturbations. We hope this work will form a foundation on which an approach to a successful protein production is systematically provided by a favorable metabolic environment by imposing proper external stresses.

Keywords

References

  1. J. C. Oh, S. H. Choi, J. H. Yun, Y. J. Ko, K. Y. Choi, and W. T. Lee, J. Kor. Magn. Reson. Soc. 21, 72 (2017) https://doi.org/10.6564/JKMRS.2017.21.2.072
  2. Y. K. Chae, S. H. Kim, and J. L. Markley, PloS one 12, e0177233 (2017) https://doi.org/10.1371/journal.pone.0177233
  3. H. Tegel, J. Steen, A. Konrad, H. Nikdin, K. Pettersson, M. Stenvall, S. Tourle, U. Wrethagen, L. Xu, L. Yderland, M. Uhlen, S. Hober, and J. Ottosson, Biotechnol. J. 4, 51 (2009) https://doi.org/10.1002/biot.200800183
  4. W. A. Prinz, F. Aslund, A. Holmgren, and J. Beckwith, J. Biol. Chem. 272, 15661 (1997) https://doi.org/10.1074/jbc.272.25.15661
  5. M. R. Dyson, S. P. Shadbolt, K. J. Vincent, R. L. Perera, and J. McCafferty, BMC Biotechnol. 4, 32 (2004) https://doi.org/10.1186/1472-6750-4-32
  6. L. Niiranen, S. Espelid, C. R. Karlsen, M. Mustonen, S. M. Paulsen, P. Heikinheimo, and N. P. Willassen, Protein Expr. Purif. 52, 210 (2007) https://doi.org/10.1016/j.pep.2006.09.005
  7. B. L. Brown, M. Hadley, and R. Page, Protein Expr. Purif. 62, 9 (2008) https://doi.org/10.1016/j.pep.2008.07.003
  8. V. De Marco, G. Stier, S. Blandin, and A. de Marco, Biochem. Biophys. Res. Commun. 322, 766 (2004) https://doi.org/10.1016/j.bbrc.2004.07.189
  9. Y. B. Zhang, J. Howitt, S. McCorkle, P. Lawrence, K. Springer, and P. Freimuth, Protein Expr. Purif. 36, 207 (2004) https://doi.org/10.1016/j.pep.2004.04.020
  10. M. P. Malakhov, M. R. Mattern, O. A. Malakhova, M. Drinker, S. D. Weeks, and T. R. Butt, J. Struct. Funct. Genomics 5, 75 (2004)
  11. F. Volonte, F. Marinelli, L. Gastaldo, S. Sacchi, M. S. Pilone, L. Pollegioni, and G. Molla, Protein Expr. Purif. 61, 131 (2008) https://doi.org/10.1016/j.pep.2008.05.010
  12. P. H. Bessette, F. Aslund, J. Beckwith, and G. Georgiou, Proc. Natl. Acad. Sci. U.S.A. 96, 13703 (1999) https://doi.org/10.1073/pnas.96.24.13703
  13. B. L. Brown, S. Grigoriu, Y. Kim, J. M. Arruda, A. Davenport, T. K. Wood, W. Peti, and R. Page, PLoS Pathog. 5, e1000706 (2009) https://doi.org/10.1371/journal.ppat.1000706
  14. Y. H. Wang, M. K. Ayrapetov, X. Lin, and G. Sun, Biochem. Biophys. Res. Commun. 346, 606 (2006) https://doi.org/10.1016/j.bbrc.2006.05.180
  15. Y. Chen, J. Song, S. F. Sui, and D. N. Wang, Protein Expr. Purif. 32, 221 (2003) https://doi.org/10.1016/S1046-5928(03)00233-X
  16. S. K. Sahu, A. Rajasekharan, and S. N. Gummadi, Biotechnol Lett. 31, 1745 (2009) https://doi.org/10.1007/s10529-009-0073-7
  17. W. S. Choi, Y. W. In, H. H. Kim, J. S. Hyun, and S. J. Park, J. Kor. Magn. Reson. Soc. 21, 44 (2017) https://doi.org/10.6564/JKMRS.2017.21.2.044
  18. Y. K. Chae, W. J. Moon, D. K. Hwang, E. J. Park, and Y. M. Kim, Protein Expr. Purif. 51, 141 (2007) https://doi.org/10.1016/j.pep.2006.07.010
  19. Y. K. Chae, and S. H. Kim, Bull. Korean Chem. Soc. 36, 66 (2015) https://doi.org/10.1002/bkcs.10016
  20. Y. K. Chae, S. H. Kim, and J. S. Hyun, Chem. Biodivers. 12, 925 (2015) https://doi.org/10.1002/cbdv.201400200
  21. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomo. NMR 6, 277 (1995)
  22. I. A. Lewis, S. C. Schommer, and J. L. Markley, Magn. Reson. Chem. 47 Suppl 1, S123 (2009) https://doi.org/10.1002/mrc.2526
  23. Y. K. Chae, S. H. Kim, and Y. K. Nam, Chem. Biodivers. 10, 1816 (2013) https://doi.org/10.1002/cbdv.201300016