• 제목/요약/키워드: metabolic heat

검색결과 132건 처리시간 0.027초

In silico characterisation, homology modelling and structure-based functional annotation of blunt snout bream (Megalobrama amblycephala) Hsp70 and Hsc70 proteins

  • Tran, Ngoc Tuan;Jakovlic, Ivan;Wang, Wei-Min
    • Journal of Animal Science and Technology
    • /
    • 제57권12호
    • /
    • pp.44.1-44.9
    • /
    • 2015
  • Background: Heat shock proteins play an important role in protection from stress stimuli and metabolic insults in almost all organisms. Methods: In this study, computational tools were used to deeply analyse the physicochemical characteristics and, using homology modelling, reliably predict the tertiary structure of the blunt snout bream (Ma-) Hsp70 and Hsc70 proteins. Derived three-dimensional models were then used to predict the function of the proteins. Results: Previously published predictions regarding the protein length, molecular weight, theoretical isoelectric point and total number of positive and negative residues were corroborated. Among the new findings are: the extinction coefficient (33725/33350 and 35090/34840 - Ma-Hsp70/ Ma-Hsc70, respectively), instability index (33.68/35.56 - both stable), aliphatic index (83.44/80.23 - both very stable), half-life estimates (both relatively stable), grand average of hydropathicity (-0.431/-0.473 - both hydrophilic) and amino acid composition (alanine-lysine-glycine/glycine-lysine-aspartic acid were the most abundant, no disulphide bonds, the N-terminal of both proteins was methionine). Homology modelling was performed by SWISS-MODEL program and the proposed model was evaluated as highly reliable based on PROCHECK's Ramachandran plot, ERRAT, PROVE, Verify 3D, ProQ and ProSA analyses. Conclusions: The research revealed a high structural similarity to Hsp70 and Hsc70 proteins from several taxonomically distant animal species, corroborating a remarkably high level of evolutionary conservation among the members of this protein family. Functional annotation based on structural similarity provides a reliable additional indirect evidence for a high level of functional conservation of these two genes/proteins in blunt snout bream, but it is not sensitive enough to functionally distinguish the two isoforms.

Proteomic Analysis of Bovine Muscle Satellite Cells during Myogenic Differentiation

  • Rajesh, Ramanna Valmiki;Jang, Eun-Jeong;Choi, In-Ho;Heo, Kang-Nyeong;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1288-1302
    • /
    • 2011
  • The aim of this study was to analyze the proteome expression of bovine satellite cells from longissimus dorsi (LD), deep pectoral (DP) and semitendinosus (ST) muscle depots during in vitro myogenic differentiation. Proteomic profiling by twodimensional gel electrophoresis and mass spectrometry of differentiating satellite cells revealed a total of 38 proteins that were differentially regulated among the three depots. Among differentially regulated proteins, metabolic proteins like lactate dehydrogenase (LDH), malate dehydrogenase (MDH) were found to be up regulated in ST, while alpha-enolase (NNE) in LD and DP depot satellite cells were down regulated. Also, our analysis found that there was a prominent up regulation of cytoskeletal proteins like actin, actincapping protein and transgelin along with chaperone proteins like heat shock protein beta 1 (HSPB 1) and T-complex protein 1 (TCP-1). Among other up regulated proteins, LIM domain containing protein, annexin 2 and Rho GDP-dissociation inhibitor 1 (Rho GDI) are observed, which were already proven to be involved in the myogeneis. More interestingly, satellite cells from ST depot were found to have a higher myotube formation rate than the cells from the other two depots. Taken together, our results demonstrated that, proteins involved in glucose metabolism, cytoskeletal modeling and protein folding plays a key role in the myogenic differentiation of bovine satellite cells.

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증 (Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer)

  • 변재영;김지영;최병철;최영진
    • 대기
    • /
    • 제18권3호
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

Energy Requirements for Maintenance and Growth of Male Saanen Goat Kids

  • Medeiros, A.N.;Resende, K.T.;Teixeira, I.A.M.A.;Araujo, M.J.;Yanez, E.A.;Ferreira, A.C.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1293-1302
    • /
    • 2014
  • The aim of study was to determine the energy requirements for maintenance and growth of forty-one Saanen, intact male kids with initial body weight (BW) of $5.12{\pm}0.19$ kg. The baseline (BL) group consisted of eight kids averaging $5.46{\pm}0.18$ kg BW. An intermediate group consisted of six kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of $12.9{\pm}0.29$ kg. The remaining kids (n = 27) were randomly allocated into nine slaughter groups (blocks) of three animals distributed among three amounts of dry matter intake (DMI; ad libitum and restricted to 70% or 40% of ad libitum intake). Animals in a group were slaughtered when the ad libitum-treatment kid in the group reached 20 kg BW. In a digestibility trial, 21 kids (same animals of the comparative slaughter) were housed in metabolic cages and used in a completely randomized design to evaluate the energetic value of the diet at different feed intake levels. The net energy for maintenance ($NE_m$) was $417kJ/kg^{0.75}$ of empty BW (EBW)/d, while the metabolizable energy for maintenance ($ME_m$) was $657kJ/kg^{0.75}$ of EBW/d. The efficiency of ME use for NE maintenance ($k_m$) was 0.64. Body fat content varied from 59.91 to 92.02 g/kg of EBW while body energy content varied from 6.37 to 7.76 MJ/kg of EBW, respectively, for 5 and 20 kg of EBW. The net energy for growth ($NE_g$) ranged from 7.4 to 9.0 MJ/kg of empty weight gain by day at 5 and 20 kg BW, respectively. This study indicated that the energy requirements in goats were lower than previously published requirements for growing dairy goats.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가 (Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses)

  • 김봉훈;서승록
    • 대한인간공학회지
    • /
    • 제17권3호
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry

  • Park, Seong-Eun;Seo, Seung-Ho;Lee, Kyoung In;Na, Chang-Su;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.57-67
    • /
    • 2018
  • Background: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. Methods: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. Results: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. Conclusion: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제60권1호
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.