• Title/Summary/Keyword: metabolic dysfunction

Search Result 159, Processing Time 0.025 seconds

A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients

  • Alfadda, Assim A.;Masood, Afshan;Al-Naami, Mohammed Y.;Chaurand, Pierre;Benabdelkamel, Hicham
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.685-695
    • /
    • 2017
  • Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, $p{\leq}0.05$) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the $NF{\kappa}B$, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun;Joo, Nam-Seok;Aldini, Giancarlo;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

Overview on Inborn Error of Metabolism involving Hepatic System (간기능 이상을 초래하는 유전성 대사질환)

  • Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.1
    • /
    • pp.20-29
    • /
    • 2013
  • Inborn error of metabolism usually presents with a constellation of clinical pictures involving multiorgan systems. Because of its rarity and clinical diversity, it is difficult to make diagnosis accurately and efficiently. Many inborn error of metabolism shows predominantly hepatic symptoms and signs. The onset of symptoms is also varying depending the disease. The onset might be even prenatal, either neonatal or infantile, and late childhood. The major manifestation patterns are jaundice or cholestasis, hepatomegaly with or without splenomegaly, hypoglycemia and acute or chronic hepatocellular dysfunction. Based on pronounced hepatic symptoms and onset of symptoms, differential diagnosis can be more easily made with subsequent further laboratory investigation. In this review paper, major inborn error of metabolism with hepatic symptoms are described from the perspective of mode of clinical presentations.

  • PDF

Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery

  • Shin, Eunji;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin;Kim, Nari
    • Integrative Medicine Research
    • /
    • v.3 no.4
    • /
    • pp.204-210
    • /
    • 2014
  • The aim of this review was to understand the effects of ${\beta}$-adrenergic stimulation on oxidative stress, structural remodeling, and functional alterations in the heart and cerebral artery. Diverse stimuli activate the sympathetic nervous system, leading to increased levels of catecholamines. Long-term overstimulation of the ${\beta}$-adrenergic receptor (${\beta}AR$) in response to catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coronary artery disease, and heartfailure. Although catecholamines have identical sites of action in the heart and cerebral artery, the structural and functional modifications differentially activate intracellular signaling cascades. ${\beta}AR$-stimulation can increase oxidative stress in the heart and cerebral artery, but has also been shown to induce different cytoskeletal and functional modifications by modulating various components of the ${\beta}AR$ signal transduction pathways. Stimulation of ${\beta}AR$ leads to cardiac dysfunction due to an overload of intracellular $Ca^{2+}$ in cardiomyocytes. However, this stimulation induces vascular dysfunction through disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown that excessive concentrations of catecholamines during stressful conditions can produce coronary spasms or arrhythmias by inducing $Ca^{2+}$-handling abnormalities and impairing energy production in mitochondria, In this article, we highlight the different fates caused by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the heart and the cerebral artery in responsed to prolonged ${\beta}AR$-stimulation.

Analysis of the Relationship between Fatty Pancreas and Cardiovascular Disease in Abdominal Ultrasonography (복부초음파검사에서 지방췌장증과 심혈관계질환과의 연관성 분석)

  • Cho, Jin-young;Ye, Soo-young
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.729-737
    • /
    • 2019
  • Fatty pancreas is an abnormal process of lipid deposition in cells, resulting in increased fat tissue and obesity. The result is a risk factor for cardiovascular and metabolic diseases. The aim of this study was to evaluate the usefulness of pancreatic fat as a predictor of cardiovascular disease and metabolic syndrome in pancreatic ultrasonography. In 407 patients who underwent a comprehensive screening at the W Health Care Center in Busan from September 2. 2018 to December 31, 2018, the degree of fat deposition in the pancreas was evaluated as the degree of mild, moderate. Data on non-obstructive atherosclerosis, BMI, hyperlipidemia, hypertension, and diabetes were collected to assess the association of pancreatic fat deposition with cardiovascular disease and metabolic syndrome. In addition, we tried to analyze the correlation between liver dysfunction and thyroid dysfunction as the degree of fat pancreas increased. We examined the relationship between six parameters including atherosclerosis, BMI, hyperlipidemia, hypertension, diabetes, liver dysfunction, and thyroid dysfunction among patients with fatty pancreas. We concluded that the carotid intima-media thickness of atherosclerosis, which is a risk factor of cardiovascular disease, is most closely related to fatty pancreas.

Differential Activation of Ras/Raf/MAPK Pathway between Heart and Cerebral Artery in Isoproterenol-induced Cardiac Hypertrophy

  • Kim, Hyun-Ju;Kim, Na-Ri;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Warda, Mohamed;Kang, Sung-Hyun;Thu, Vu-Thi;Khoa, Tran-Minh;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.299-304
    • /
    • 2005
  • Cardiac hypertrophy contributes an increased risk to major cerebrovascular events. However, the molecular mechanisms underlying cerebrovascular dysfunction during cardiac hypertrophy have not yet been characterized. In the present study, we examined the molecular mechanism of isoproterenol (ISO)-evoked activation of Ras/Raf/MAPK pathways as well as PKA activity in cerebral artery of rabbits, and we also studied whether the activations of these signaling pathways were altered in cerebral artery, during ISO-induced cardiac hypertrophy compared to heart itself. The results show that the mRNA level of c-fos (not c-jun and c-myc) in heart and these genes in cerebral artery were considerably increased during cardiac hypertrophy. These results that the PKA activity and activations of Ras/Raf/ERK cascade as well as c-fos expression in rabbit heart during cardiac hypertrophy were consistent with previous reports. Interestingly, however, we also showed a novel finding that the decreased PKA activity might have differential effects on Ras and Raf expression in cerebral artery during cardiac hypertrophy. In conclusion, there are differences in molecular mechanisms between heart and cerebral artery during cardiac hypertrophy when stimulated with β2 adrenoreceptor (AR), suggesting a possible mechanism underlying cerebrovascular dysfunction during cardiac hypertrophy.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

Iatrogenic Hemocromatosis Case in Propionic Acidemia (프로피온산 혈증 환아에서 경험한 의원성 헤모크로마토시스 I례)

  • Kim, Sook Za;Jeon, Young Mi;Song, Woong Ju
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.1
    • /
    • pp.54-56
    • /
    • 2013
  • Propionic acidemia is an inherited organic acid metabolic disorder. During chronic recurrent metabolic crisis, multiple blood transfusions can cause secondary hemochromatosis. We report a patient with propionic acidemia who had iron overload that resulted in liver dysfunction, cardiomyopathy and diabetes. When multiple blood transfusions are unavoidable, use of chelating agents for iron can prevent complications such as diabetes and hemochromatosis.

  • PDF

Prostate Cancer and Metabolic Syndrome: Is there a link?

  • McGrowder, Donovan A.;Jackson, Lennox Anderson;Crawford, Tazhmoye V.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • Metabolic syndrome has become quite prevalent within our society. Over the past two decades, the prevalence of metabolic syndrome has sharply increased worldwide and it has become a major public health problem in several countries. It is associated with the global epidemic of obesity and diabetes mellitus and imposes numerous cardiovascular risks. Prostate cancer is the second most common cancer among men, surpassed only by non-melanoma skin cancer. A considerable body of evidence exists suggesting that some components of the metabolic syndrome have been associated with the risk of prostate cancer. These components include obesity, an abdominal fat distribution, and hyperinsulinemia. Androgen deprivation therapy (ADT) is the most widely used therapeutic modality in prostate cancer. It changed the body composition and lipid profile of men with prostate cancer. Androgen deficiency is associated with increased levels of total cholesterol, low-density lipoprotein (LDL)-cholesterol, increased production of proinflammatory factors, and increased thickness of the arterial wall and contributes to endothelial dysfunction. The aim of this review is to evaluate the association between metabolic syndrome and prostate cancer and to discuss the implications of androgen deficiency in men with cardiovascular risk factors. A comprehensive literature search was carried out with the use of PubMed from 1980 through 2011, and relevant articles pertinent to metabolic syndrome and prostate cancer are evaluated and discussed.