• Title/Summary/Keyword: meta-heuristic search

Search Result 105, Processing Time 0.024 seconds

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

Meta-heuristic Method for the Single Source Capacitated Facility Location Problem (물류 센터 위치 선정 및 대리점 할당 모형에 대한 휴리스틱 해법)

  • Soak, Sang-Moon;Lee, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.107-116
    • /
    • 2010
  • The facility location problem is one of the traditional optimization problems. In this paper, we deal with the single source capacitated facility location problem (SSCFLP) and it is known as an NP-hard problem. Thus, it seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the SSCFLP. This paper introduces a new efficient evolutionary algorithm for the SSCFLP. The proposed algorithm is devised by incorporating a general adaptive link adjustment evolutionary algorithm and three heuristic local search methods. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds optimum solutions at almost all middle size test instances and very stable solutions at larger size test instances.

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

타부탐색(Tabu Search)의 확장모델을 이용한 '외판원 문제(Traveling Salesman Problem)' 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.135-138
    • /
    • 1996
  • In solving the Travel Salesman Problem(TSP), we easily reach local optimal solutions with the existing methods such as TWO-OPT, THREE-OPT, and Lin-Kernighen. Tabu search, as a meta heuristic, is a good mechanism to get an optimal or a near optimal solution escaping from the local optimal. By utilizing AI concepts, tabu search continues to search for improved solutions. In this study, we focus on developing a new neighborhood structure that maintains the feasibility of the tours created by exchange operations in TSP. Intelligent methods are discussed, which keeps feasible tour routes even after exchanging several edges continuously. An extended tabu search model, performing cycle detection and diversification with memory structure, is applied to TSP. The model uses effectively the information gathered during the search process. Finally, the results of tabu search and simulated annealing are compared based on the TSP problems in the prior literatures.

  • PDF

Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods

  • Degertekin, S.O.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.391-410
    • /
    • 2008
  • In this article, a harmony search algorithm is presented for optimum design of steel frame structures. Harmony search is a meta-heuristic search method which has been developed recently. It is based on the analogy between the performance process of natural music and searching for solutions of optimization problems. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) and AISC Allowable Stress Design (ASD) specifications, maximum (lateral displacement) and interstorey drift constraints, and also size constraint for columns were imposed on frames. The results of harmony search algorithm were compared to those of the other optimization algorithms such as genetic algorithm, optimality criterion and simulated annealing for two planar and two space frame structures taken from the literature. The comparisons showed that the harmony search algorithm yielded lighter designs for the design examples presented.

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

A Novel and Effective University Course Scheduler Using Adaptive Parallel Tabu Search and Simulated Annealing

  • Xiaorui Shao;Su Yeon Lee;Chang Soo Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.843-859
    • /
    • 2024
  • The university course scheduling problem (UCSP) aims at optimally arranging courses to corresponding rooms, faculties, students, and timeslots with constraints. Previously, the university staff solved this thorny problem by hand, which is very time-consuming and makes it easy to fall into chaos. Even some meta-heuristic algorithms are proposed to solve UCSP automatically, while most only utilize one single algorithm, so the scheduling results still need improvement. Besides, they lack an in-depth analysis of the inner algorithms. Therefore, this paper presents a novel and practical approach based on Tabu search and simulated annealing algorithms for solving USCP. Firstly, the initial solution of the UCSP instance is generated by one construction heuristic algorithm, the first fit algorithm. Secondly, we defined one union move selector to control the moves and provide diverse solutions from initial solutions, consisting of two changing move selectors. Thirdly, Tabu search and simulated annealing (SA) are combined to filter out unacceptable moves in a parallel mode. Then, the acceptable moves are selected by one adaptive decision algorithm, which is used as the next step to construct the final solving path. Benefits from the excellent design of the union move selector, parallel tabu search and SA, and adaptive decision algorithm, the proposed method could effectively solve UCSP since it fully uses Tabu and SA. We designed and tested the proposed algorithm in one real-world (PKNU-UCSP) and ten random UCSP instances. The experimental results confirmed its effectiveness. Besides, the in-depth analysis confirmed each component's effectiveness for solving UCSP.

Applying tabu search to multiprocessor task scheduling problem with precedence relations (선행관계를 가진 다중프로세서 작업들의 Makespan 최소화를 위한 변형타부검색)

  • Lee Dong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.42-48
    • /
    • 2004
  • This paper concerns on a multiprocessor task scheduling problem with precedence relation, in which each task requires several processors simultaneously. Meta-heuristic generally finds a good solution if it starts from a good solution. In this paper, a tabu search is presented to find a schedule of minimal time to complete all tasks. A modified tabu search is also presented which uses a new initial solution based on the best solution during the previous run as the new starting solution for the next iteration. Numerical results show that a tabu search and a modified tabu search yield a better performance than the previous studies.