• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.029 seconds

Development of New Meta-Heuristic For a Bivariate Polynomial (이변수 다항식 문제에 대한 새로운 메타 휴리스틱 개발)

  • Chang, Sung-Ho;Kwon, Moonsoo;Kim, Geuntae;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Meta-heuristic algorithms have been developed to efficiently solve difficult problems and obtain a global optimal solution. A common feature mimics phenomenon occurring in nature and reliably improves the solution through repetition. And at the same time, the probability is used to deviate from the regional optimal solution and approach the global optimal solution. This study compares the algorithm created based on the above common points with existed SA and HS to show advantages in time and accuracy of results. Existing algorithms have problems of low accuracy, high memory, long runtime, and ignorance. In a two-variable polynomial, the existing algorithms show that the memory increases and the accuracy decrease. In order to improve the accuracy, the new algorithm increases the number of initial inputs and increases the efficiency of the search by introducing a direction using vectors. And, in order to solve the optimization problem, the results of the last experiment were learned to show the learning effect in the next experiment. The new algorithm found a solution in a short time under the experimental conditions of long iteration counts using a two-variable polynomial and showed high accuracy. And, it shows that the learning effect is effective in repeated experiments.

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

An Application of Harmony Search Algorithm for Operational Cost Minimization of MicroGrid System (마이크로 그리드 운영비용 최소화를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1287-1293
    • /
    • 2009
  • This paper presents an application of Harmony Search (HM) meta-heuristic optimization algorithm for optimal operation of microgrid system. The microgrid system considered in this paper consists of a wind turbine, a diesel generator, and a fuel cell. An one day load profile which divided 20 minute data and wind resource for wind turbine generator were used for the study. In optimization, the HS algorithm is used for solving the problem of microgrid system operation which a various generation resources are available to meet the customer load demand with minimum operating cost. The application of HS algorithm to optimal operation of microgrid proves its effectiveness to determine optimally the generating resources without any differences of load mismatch and having its nature of fast convergency time as compared to other optimization method.

Analysis of Evolutionary Optimization Methods for CNN Structures (CNN 구조의 진화 최적화 방식 분석)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.767-772
    • /
    • 2018
  • Recently, some meta-heuristic algorithms, such as GA(Genetic Algorithm) and GP(Genetic Programming), have been used to optimize CNN(Convolutional Neural Network). The CNN, which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, the recent attempts to automatically construct CNN architectures are investigated and analyzed. First, two GA based methods are summarized. One is the optimization of CNN structures with the number and size of filters, connection between consecutive layers, and activation functions of each layer. The other is an new encoding method to represent complex convolutional layers in a fixed-length binary string, Second, CGP(Cartesian Genetic Programming) based method is surveyed for CNN structure optimization with highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

Short-Distance Gate Subtree Algorithm for Capacitated Minimum Spanning Tree Problem (능력한정 최소신장트리 문제의 근거리 게이트 서브트리 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.33-41
    • /
    • 2021
  • This paper proposes heuristic greedy algorithm that can be find the solution within polynomial time with solution finding rule for the capacitated minimum spanning tree(CMST) problem, known as NP-hard. The CMST problem can be solved by computer-aided meta-heuristic because of the Esau-Williams heuristic polynomial time algorithm has a poor performance. Nevertheless the meta-heuristic methods has a limit performance that can't find optimal solution. This paper suggests visual by handed solution-finding rule for CMST. The proposed algorithm firstly construct MST, and initial feasible solution of CMST from MST, then optimizes the CMST with the subtree gates more adjacent to root node. As a result of total 30 cases of OR-LIB 10 data, Q=3,5,10, the proposed algorithm gets the best performance.

Solving the Constrained Job Sequencing Problem using Candidate Order based Tabu Search (후보순위 기반 타부 서치를 이용한 제약 조건을 갖는 작업 순서결정 문제 풀이)

  • Jeong, Sung-Wook;Kim, Jun-Woo
    • The Journal of Information Systems
    • /
    • v.25 no.1
    • /
    • pp.159-182
    • /
    • 2016
  • Purpose This paper aims to develop a novel tabu search algorithm for solving the sequencing problems with precedence constraints. Due to constraints, the traditional meta heuristic methods can generate infeasible solutions during search procedure, which must be carefully dealt with. On the contrary, the candidate order based tabu search (COTS) is based on a novel neighborhood structure that guarantees the feasibility of solutions, and can dealt with a wide range of sequencing problems in flexible manner. Design/methodology/approach Candidate order scheme is a strategy for constructing a feasible sequence by iteratively appending an item at a time, and it has been successfully applied to genetic algorithm. The primary benefit of the candidate order scheme is that it can effectively deal with the additional constraints of sequencing problems and always generates the feasible solutions. In this paper, the candidate order scheme is used to design the neighborhood structure, tabu list and diversification operation of tabu search. Findings The COTS has been applied to the single machine job sequencing problems, and we can see that COTS can find the good solutions whether additional constraints exist or not. Especially, the experiment results reveal that the COTS is a promising approach for solving the sequencing problems with precedence constraints. In addition, the operations of COTS are intuitive and easy to understand, and it is expected that this paper will provide useful insights into the sequencing problems to the practitioners.

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System (Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

General Set Covering for Feature Selection in Data Mining

  • Ma, Zhengyu;Ryoo, Hong Seo
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • Set covering has widely been accepted as a staple tool for feature selection in data mining. We present a generalized version of this classical combinatorial optimization model to make it better suited for the purpose and propose a surrogate relaxation-based procedure for its meta-heuristic solution. Mathematically and also numerically with experiments on 25 set covering instances, we demonstrate the utility of the proposed model and the proposed solution method.

Meta-heuristic Method for the Single Source Capacitated Facility Location Problem (물류 센터 위치 선정 및 대리점 할당 모형에 대한 휴리스틱 해법)

  • Soak, Sang-Moon;Lee, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.107-116
    • /
    • 2010
  • The facility location problem is one of the traditional optimization problems. In this paper, we deal with the single source capacitated facility location problem (SSCFLP) and it is known as an NP-hard problem. Thus, it seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the SSCFLP. This paper introduces a new efficient evolutionary algorithm for the SSCFLP. The proposed algorithm is devised by incorporating a general adaptive link adjustment evolutionary algorithm and three heuristic local search methods. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds optimum solutions at almost all middle size test instances and very stable solutions at larger size test instances.