• Title/Summary/Keyword: message redundancy

Search Result 25, Processing Time 0.017 seconds

Synchronous Distributed Load Balancing Algorithm Employing SBIBD (SBIBD를 이용한 분산시스템의 부하 균형 알고리즘)

  • 김성열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.386-393
    • /
    • 2004
  • In order to maintain load balancing in distributed systems in a decentralized manner, every node should obtain workload information from all the nodes on the network. It requires $Ο({v^2})$ traffic overheads, where v is the number of nodes. This paper presents a new synchronous dynamic distributed load balancing algorithm for a ( v,k+1,1)-configured network topology, which is a kind of 2k regular graph, based on symmetric balanced incomplete block design, where v equals ${k^2}+k+1$. Our algorithm needs only Ο(v√v) message overheads and each node receives workload information from all the nodes without redundancy. And load balancing in this algorithm is maintained so that every link has same amount of traffic by √v for transferring workload information.

A Sensing Radius Intersection Based Coverage Hole Recovery Method in Wireless Sensor Network (센서 네트워크에서 센싱 반경 교차점 기반 홀 복구 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.431-439
    • /
    • 2021
  • Since the sensor nodes are randomly arranged in the region of interest, it may happen that the sensor network area is separated or there is no sensor node in some area. In addition, after the sensor nodes are deployed in the sensor network, a coverage hole may occur due to the exhaustion of energy or physical destruction of the sensor nodes. The coverage hole can greatly affect the overall performance of the sensor network, such as reducing the data reliability of the sensor network, changing the network topology, disconnecting the data link, and worsening the transmission load. Therefore, sensor network coverage hole recovery has been studied. Existing coverage hole recovery studies present very complex geometric methods and procedures in the two-step process of finding a coverage hole and recovering a coverage hole. This study proposes a method for discovering and recovering a coverage hole in a sensor network, discovering that the sensor node is a boundary node by itself, and determining the location of a mobile node to be added. The proposed method is expected to have better efficiency in terms of complexity and message transmission compared to previous methods.

A study on the attribute of infotainment design (인포테인먼트 디자인의 개념 연구)

  • Oh, Byung-Keun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.229-240
    • /
    • 2006
  • It is very important issue in information design to improve information efficiency by adapting interesting factors in changing circumstance of information communication. The concept of infotainment is utilized in designing information contents in a way of combining entertainment factors with information itself based on various media and representation technologies. The information arousing user's attention, which includes interesting factors, is persuasive message comppared to the informative message conveying only information itself. The reason why infotainment is persuasive is because it makes the user absorb deeply in the information during the process of understanding by sensorial stimuli, cognitive interest, and situational interest. The sensorial stimuli originates from the expression elements of information design. The cognitive interest from the user's intellectual activities has a try to overcome mental block when user confronts with the redundant expression in the manner of unexpectedness and inharmony. The situational interest originates from user's optimum experience by the flow of satisfaction. Therefore, the attribute of infotainment is defined with the stimuli, the redundancy, and user's satisfaction. Its design elements consist of physical factors, organizational factors, and psychological factors. The physical factors through sensorial stimuli are utilized by visual manipulation such as visual analogy or visual pun, multimedia, and moving expression. The organizational factors through redundant expression bring user's imagination by adapting storytelling, event, and interaction in the process of understanding information. The psychological factors through expression of entertainment interests such as humor, play, and game give users psychological satisfaction with the flow. In conclusion the concept of infotainment can be adapted when the design factors should be integrated with its attributes, or the conveying information should go well with its purpose and characteristics.

  • PDF

A Design of Pipeline Chain Algorithm Based on Circuit Switching for MPI Broadcast Communication System (MPI 브로드캐스트 통신을 위한 서킷 스위칭 기반의 파이프라인 체인 알고리즘 설계)

  • Yun, Heejun;Chung, Wonyoung;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.795-805
    • /
    • 2012
  • This paper proposes an algorithm and a hardware architecture for a broadcast communication which has the worst bottleneck among multiprocessor using distributed memory architectures. In conventional system, The pipelined broadcast algorithm is an algorithm which takes advantage of maximum bandwidth of communication bus. But unnecessary synchronization process are repeated, because the pipelined broadcast sends the data divided into many parts. In this paper, the MPI unit for pipeline chain algorithm based on circuit switching removing the redundancy of synchronization process was designed, the proposed architecture was evaluated by modeling it with systemC. Consequently, the performance of the proposed architecture was highly improved for broadcast communication up to 3.3 times that of systems using conventional pipelined broadcast algorithm, it can almost take advantage of the maximum bandwidth of transmission bus. Then, it was implemented with VerilogHDL, synthesized with TSMC 0.18um library and implemented into a chip. The area of synthesis results occupied 4,700 gates(2 input NAND gate) and utilization of total area is 2.4%. The proposed architecture achieves improvement in total performance of MPSoC occupying relatively small area.

A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree and Quasi-randomized Matrix

  • Wang, Jun;Yi, Qiong;Chen, Yunfei;Wang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.227-247
    • /
    • 2018
  • For intermittently connected wireless sensor networks deployed in hash environments, sensor nodes may fail due to internal or external reasons at any time. In the process of data collection and recovery, we need to speed up as much as possible so that all the sensory data can be restored by accessing as few survivors as possible. In this paper a novel redundant data storage algorithm based on minimum spanning tree and quasi-randomized matrix-QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. Every node stores only one encoded data packet in its storage which is the XOR result of the received source data packets in accordance with the quasi-randomized matrix theory. The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of the traversal message of the source packets. In order to solve the problem that some source packets cannot be restored if the random matrix is not full column rank, the semi-randomized network coding method is used in QRNCDS. Each source node only needs to store its own source data packet, and the storage nodes choose to receive or not. In the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve the probability and efficiency of data decoding. As a result, part of the source data can be recovered in the case of semi-random matrix without full column rank. The simulation results show that QRNCDS has lower energy consumption, higher data collection efficiency, higher decoding efficiency, smaller data storage redundancy and larger network fault tolerance.