• Title/Summary/Keyword: mesoscale model

Search Result 179, Processing Time 0.03 seconds

A Development of PM10 Forecasting System (미세먼지 예보시스템 개발)

  • Koo, Youn-Seo;Yun, Hui-Young;Kwon, Hee-Yong;Yu, Suk-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

A Study of Atmospheric Field around the Pohang for Dispersion Analysis of Air Pollutants -Numerical Simulation of Wind Field- (대기오염 확산 해석을 위한 포항지역 기상장 연구 -바람장 수치모의-)

  • 이화운;정우식;김현구;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Sea/land circulation system is a representative mesoscale local circulation system in coastal area. In this study, wind fields around coastal area. Pohang, which is affected by this system was investigated and its detailed characteristic analysis was carried out. The following can be found out from the numerical simulation. Generally, at nighttime mountain winds prevail and land breeze toward the coastal area was well simulated During daytime, valley wind and sea breeze was simulated in detail. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. In order to investigate the accuracy of model results. wind speed, temperature and wind direction of continuous typical sea/land breeze occurrence day was compared with observation data. Analyzing the characteristics of local circulation system was very hard because of horizontally sparse observation data but from the above result, a numerical simulation using RAMS, which satisfies the spatial high resolution, will provide more accurate results.

Including Thermal Effects in CFD Wind Flow Simulations

  • Meissner, Catherine;Gravdahl, Arne Reidar;Steensen, Birthe
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.833-839
    • /
    • 2009
  • The calculation of the wind field for resource assessment is done by using CFD Reynolds-Averaged Navier-Stokes simulations performed with the commercial software WindSim. A new interface has been created to use mesoscale simulation data from a meteorological model as driving data for the simulations. This method makes it necessary to take into account thermal effects on the wind field to exploit the full potential of this method. The procedure for considering thermal effects in CFD wind field simulations as well as the impact of thermal effects on the wind field simulations is presented. Simulations for non-neutral atmospheric conditions with the developed method are consistent with expected behavior and show an improvement of simulation results compared with observations.

Characteristics of Mesoscale Circulation with the Detailed Building Distribution in Busan Metropolitan Area (부산지역 빌딩 분포 상세화에 따른 중규모 순환 특성)

  • Son, Jeong-Ock;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • In order to clarify the impacts of thermal difference in atmospheric boundary layer due to the different sophistication of building information in Busan metropolitan areas, several numerical simulations were carried out. ACM (Albedo Calculation Model) and WRF (Weather Research and Forecasting) was applied for estimating albedo and meteorological elements in urban area, respectively. In comparison with coarse aggregated and small buildings, diurnal variation of albedo is highly frequent and its total value tend to be smaller in densely aggregated and tall buildings. Estimated TKE and sensible heat flux with sophisticatedly urban building parameterization is more resonable and valid values are mainly induced by urban building sophistication. The simulation results suggest that decreased albedo and increased roughness due to skyscraper plays an important role in the result of thermal change in atmospheric boundary layer.

Development of a Miniature Air-bearing Stage with a Moving-magnet Linear Motor

  • Ro, Seung-Kook;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • We propose a new miniature air-bearing stage with a moving-magnet slotless linear motor. This stage was developed to achieve the precise positioning required for submicron-level machining and miniaturization by introducing air bearings and a linear motor sufficient for mesoscale precision machine tools. The linear motor contained two permanent magnets and was designed to generate a preload force for the vertical air bearings and a thrust force for the stage movement. The characteristics of the air bearings, which used porous pads, were analyzed with numerical methods, and a magnetic circuit model was derived for the linear motor to calculate the required preload and thrust forces. A prototype of a single-axis miniature stage with dimensions of $120\;(W)\;{\times}\;120\;(L)\;{\times}\;50\;(H)\;mm$ was designed and fabricated, and its performance was examined, including its vertical stiffness, load capacity, thrust force, and positioning resolution.

Development of Fine-grid Numerical Tidal Models of the Yellow Sea and the East China Sea (세격자체계의 황해 및 동지나해 조석모형의 개발)

  • 최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.231-244
    • /
    • 1990
  • The objectives of this multiyear research are directed toward the investigation of mesoscale circulation dynamics in the Yellow Sea and the East China Sea. With the advent of Supercomputers and increasing necessity of resolving the flow with enough details, a hydrodynamic numerical model of the East China Sea has been developed with resolution of 1/15$^{\circ}$latitude by 1/12$^{\circ}$longitude covering the entire continental shelf. As a first step M$_2$tidal regime representing the domanant tidal conditions of the shelf was computed. Preliminary results are presented and discussions for further developments are presented.

  • PDF

A Three Dimensional Numerical Simulation of the Land and Sea breeze over Pusan Coastal Area, Korea. (부산 연안에서의 3차원 해륙풍 수치 모의)

  • 문승의;김유근
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • The land and sea breeze over the Pusan coastal area is studied by three dimensional mesoscale numerical model. According to the results of the simulation experiments, both Pusan areas and Kimhae areas, the sea breeze began at 0800LST and the strongest at 1500LST and then at 1800LST. After midnight, the sea breeze changed about the land breeze and become weaker than that of the sea breeze in the daytime. Comparisons between calculations and observations showed that the characteristics of diurnal variation and v-component of the wind velocity relatively is similar to the Pusan areas. On the Kimhae areas, however, observations showed time lag which compared to the results of simulation experiments in the velocity of sea breeze and diurnal variation. From the above results, comparisons between calculations and observations is much more similar to the coastal areas than on the inland area.

  • PDF

Numerical Simulation of Tracer Distribution during CAPTEX (CAPTEX 자료에 나타난 추적물 농도 분포의 수치 모사)

  • Kim, Seung-Bum;Lee, Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.357-370
    • /
    • 1994
  • This paper introduces an Eulerian long- range transport model coupled with a mesoscale atmospheric model. The model has been applied to the simulation of tracer distribution during two cases of Cross Appalachian Tracer Experiment (CAPIEX). Meteorological fields are Predicted by CSU RAMS with four-dimensional assimilation and tracer transport is computed from an Eulerian dispersion model. The atmospheric model with a four-dimensional assimilation has produced meteorological fields that agree well with observation and has proved its high potential as a generator of meteorological data for a long-range transport model. The Present transport model Produces reasonable simulations of observed tracer transport although it was partially successful in the case with complicated structure in observed concentration. Model with Bott's 2nd-order scheme performs as well as that with Bott's 4th-order scheme and increased explicit horizontal diffusivity. Diagnosis of the model results indicates that the Present long-range transport model has a good potential as a framework for the acid deposition model with detailed cloud and chemical processes.

  • PDF

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

Study on vertical variation of horizontal wind energy resources distribution using clustering analysis (군집분석을 통한 풍력자원 수평 공간 분포의 연직 변화에 관한 연구)

  • Kim, Min-Jung;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyuk;Jung, Woo-Sik;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.554-556
    • /
    • 2009
  • Wind classification for exact estimation of wind energy resources was carried out using numerically simulated wind data for three years. The MM5(a fifth-generation Mesoscale Model), developed at Penn State University and the National Center for Atmospheric Research (NCAR), was used to estimate the wind fields in this study. We also use a variant of the K-mean clustering to classify the wind district and define the relation between districts. Wind estimated at surface and 100 m high at Busan area is classified into the 10 and 7 classes, respectively. These discrepancies of wind districts pattern at surface and upper air meteorological data indicates the quantity of wind resources can be changed according to the level of wind data used in estimation. Therefore, the estimation of wind district classification by reasonable wind data is utilized to build the effective policy for wind energy dissemination.

  • PDF