• 제목/요약/키워드: mesh net

Search Result 270, Processing Time 0.018 seconds

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.

A hybrid neutronics method with novel fission diffusion synthetic acceleration for criticality calculations

  • Jiahao Chen;Jason Hou;Kostadin Ivanov
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1428-1438
    • /
    • 2023
  • A novel Fission Diffusion Synthetic Acceleration (FDSA) method is developed and implemented as a part of a hybrid neutronics method for source convergence acceleration and variance reduction in Monte Carlo (MC) criticality calculations. The acceleration of the MC calculation stems from constructing a synthetic operator and solving a low-order problem using information obtained from previous MC calculations. By applying the P1 approximation, two correction terms, one for the scalar flux and the other for the current, can be solved in the low-order problem and applied to the transport solution. A variety of one-dimensional (1-D) and two-dimensional (2-D) numerical tests are constructed to demonstrate the performance of FDSA in comparison with the standalone MC method and the coupled MC and Coarse Mesh Finite Difference (MC-CMFD) method on both intended purposes. The comparison results show that the acceleration by a factor of 3-10 can be expected for source convergence and the reduction in MC variance is comparable to CMFD in both slab and full core geometries, although the effectiveness of such hybrid methods is limited to systems with small dominance ratios.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Platform development for multi-physics coupling and uncertainty analysis based on a unified framework

  • Guan-Hua Qian;Ren Li;Tao Yang;Xu Wang;Peng-Cheng Zhao;Ya-Nan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1791-1801
    • /
    • 2023
  • The multi-physics coupled methodologies that have been widely used to analyze the complex process occurring in nuclear reactors have also been used to the R&D of numerical reactors. The advancement in the field of computer technology has helped in the development of these methodologies. Herein, we report the integration of ADPRES code and RELAP5 code into the SALOME-ICoCo framework to form a multi-physics coupling platform. The platform exploits the supervisor architecture, serial mode, mesh one-to-one correspondence and explicit coupling methods during analysis, and the uncertainty analysis tool URANIE was used. The correctness of the platform was verified through the NEACRP-L-335 benchmark. The results obtained were in accordance with the reference values. The platform could be used to accurately determine the power peak. In addition, design margins could be gained post uncertainty analysis. The initial power, inlet coolant temperature and the mass flow of assembly property significantly influence reactor safety during the rod ejections accident (REA).

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

Development of a System for Analyzing the Types and Sizes of Microplastics in an Aquatic Environment (수계 내 미세플라스틱의 종과 크기를 분석하기 위한 시스템 개발)

  • Su-jeong Jeon;Joon-seok Lee;Bo-ram Park;Kyung-hoon Beak
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.203-208
    • /
    • 2024
  • Every year, approximately 350 million tons of plastic waste are generated worldwide. This waste, can degrade into microplastics, owing to factors such as temperature changes and UV exposure. These smaller plastic particles are increasingly entering the food chain through marine life, thereby raising concerns about their impact on human health. Consequently, there is an increasing need to measure microplastics. Common methods involve direct collection by using a manta trawl equipped with a 330 ㎛ mesh net or performing spectroscopic and thermal analyses on collected samples. However, these methods require complex pre-processing, which risk sample destruction. In this study, we developed a system to directly sample microplastics in aquatic environments by using laser-induced fluorescence spectroscopy. Through an analysis of the fluorescence spectra as well as, the with gradient and integration at specific points, we successfully distinguished microplastics of 100, 200, 300, and 500 ㎛ in size, and we also differentiated between polyethylene (PE) and polystyrene (PS) types.

Fisheries in Geray Reservoir could be managed using biometric and reproductive characteristics of the Common carp (Cyprinus carpio L. 1758)

  • Yirga Enawgaw;Ayalew Sisay;Asnaku Bazezew;Solomon Wagaw;Assefa Wosnie
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.337-345
    • /
    • 2024
  • This study looked at some biometric and reproductive aspects of the Common carp (Cyprinus carpio) - the overexploited fish species in the Geray Reservoir as a foundation to develop an efficient fisheries management strategy. 50 fish samples (20 to 44 cm and 130 to 2,400 g) were collected between October and May 2022 using a cast net with a mesh size of 6 cm. The ratio of male to female C. carpio (1:0.52) was deviating from the anticipated 1:1 ratio. The absolute fecundity of C. carpio was relatively low (12,375 to 31,392 eggs). Gonadosomatic index varied from 0.01 to 4.6 (male) to 0.24-12.75 (female), and the spawning period of C. carpio extended from December to January. The length-weight relationships for males (TW = 0.0009TL3.87) and females (TW = 0.0007L3.97) indicate that C. carpio had positive allometric growth; which may have been caused by unsuitable habitat conditions and overfishing. There is a need to develop fisheries management like implementing integrated conservation efforts and reducing wetland farming. For this, this information provides a baseline data.

Solution of OECD/NEA PWR MOX/UO2 benchmark with a high-performance pin-by-pin core calculation code

  • Hyunsik Hong;Jooil Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3654-3667
    • /
    • 2024
  • Expanding upon the framework of the steady-state pin-by-pin 2D/1D decoupling method, a novel and highperformance pin-by-pin transient calculation method has been introduced. This transient method, consistent to the steady-state formulation, is designed for time-dependent calculations utilizing a 3D diffusion-based finite difference method (FDM). The inherent complexity of the large 3D problem is effectively managed by decoupling it into a series of planar (2D) and axial (1D) problems. In addition, tens of thousands of pin-cells are grouped into hundreds of boxes to reduce the computing burden for the 1D calculations without essential loss of the accuracy. Two-level coarse mesh finite difference (CMFD) formulation comprising multigroup nodewise CMFD and twogroup assemblywise CMFD is employed as well to accelerate the convergence. Errors originating from the pinlevel homogenization, energy group condensation, and the use of lower order calculation methods are simultaneously corrected by the pinwise super homogenization (SPH) equivalence factor. The transient method is evaluated with OECD/NEA PWR MOX/UO2 benchmark. Code-to-code comparison with the nTRACER direct whole core calculation code yielded highly satisfactory results for the transient scenario as well as the steady-state problems. Furthermore, comparative analyses with conventional nodal calculations show superiority of the pin-by-pin calculation.

Korean-specific dose coefficients for external environmental exposures: Soil contamination

  • Ji Won Choi;Yumi Lee;Bangho Shin;Chansoo Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4375-4383
    • /
    • 2024
  • In this study, we first produced the Korean-specific dose coefficients (DCs) for soil contamination using the Mesh-type Reference Korean Phantoms (MRKPs). The Korean DCs were compared with the values in ICRP Publication 144 produced using the Caucasian-based ICRP reference phantoms to investigate dosimetric impact due to the racial difference (Korean/Asian vs Caucasian). Monte Carlo dose calculations using the Geant4 code were conducted where the photon and electron sources in the phase-space data used for the ICRP-144 DC calculations were irradiated to the MRKPs. For photons, the organ DCs of the MRKPs showed a good agreement with the ICRP-144 DCs (deviations <20 %) for most energies, while significant differences at energies below 0.05 MeV were observed by up to a factor of 55.6 (thymus at 0.015 MeV). For electrons, notable differences in the organ DCs were observed the overall energy region (deviations >20 % for most cases). The effective DCs of the MRKPs showed an excellent agreement with the ICRP-144 DCs for photons (deviations <16 %), whereas notable differences by up to 1.7 times (0.05 MeV) were observed for electrons. The Korean DCs for soil contamination will be beneficially used in dose estimates for Koreans especially in risk assessments.