DOI QR코드

DOI QR Code

Solution of OECD/NEA PWR MOX/UO2 benchmark with a high-performance pin-by-pin core calculation code

  • Received : 2024.02.27
  • Accepted : 2024.04.13
  • Published : 2024.09.25

Abstract

Expanding upon the framework of the steady-state pin-by-pin 2D/1D decoupling method, a novel and highperformance pin-by-pin transient calculation method has been introduced. This transient method, consistent to the steady-state formulation, is designed for time-dependent calculations utilizing a 3D diffusion-based finite difference method (FDM). The inherent complexity of the large 3D problem is effectively managed by decoupling it into a series of planar (2D) and axial (1D) problems. In addition, tens of thousands of pin-cells are grouped into hundreds of boxes to reduce the computing burden for the 1D calculations without essential loss of the accuracy. Two-level coarse mesh finite difference (CMFD) formulation comprising multigroup nodewise CMFD and twogroup assemblywise CMFD is employed as well to accelerate the convergence. Errors originating from the pinlevel homogenization, energy group condensation, and the use of lower order calculation methods are simultaneously corrected by the pinwise super homogenization (SPH) equivalence factor. The transient method is evaluated with OECD/NEA PWR MOX/UO2 benchmark. Code-to-code comparison with the nTRACER direct whole core calculation code yielded highly satisfactory results for the transient scenario as well as the steady-state problems. Furthermore, comparative analyses with conventional nodal calculations show superiority of the pin-by-pin calculation.

Keywords

Acknowledgement

This work was supported by the Innovative Small Modular Reactor Development Agency grant funded by the Korea Government (MOTIE) (RS-2023-00259289).

References

  1. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374.
  2. M. Ryu, H.G. Joo, nTRACER whole core transport solutions to C5G7-TD benchmark, in: M&C 2017, Jeju, Korea, 2017.
  3. A. Rahman, H.C. Lee, D. Lee, High fidelity transient solver in STREAM based on multigroup coarse-mesh finite difference method, Nucl. Eng. Technol. 55 (9) (2023) 3301-3312.
  4. Q. Shen, Y. Wang, D. Jabaay, B. Kochunas, T. Downar, Transient analysis of C5G7-TD benchmark with MPACT, Ann. Nucl. Energy 125 (2019) 107-120.
  5. T.N. Nguyen, Y.S. Jung, T. Downar, C. Lee, Implementation of the transient fixedsource problem in the neutron transport code PROTEUS-MOC, Ann. Nucl. Energy 129 (2019) 199-206.
  6. M. Tatsumi, M. Tabuchi, K. Sato, Y. Kodama, Y. Ohoka, H. Nagano, Recent advancements in AEGIS/SCOPE2 and its verifications and validations, in: M&C 2017, Jeju, Korea, 2017.
  7. Y. Li, W. Yang, S. Wang, H. Wu, L. Cao, A three-dimensional PWR-core pin-by-pin analysis code NECP-Bamboo2.0, Ann. Nucl. Energy 144 (2020).
  8. Z. Li, J. Pan, B. Xia, S. Qiang, W. Lu, Q. Li, Verification of neutronics and thermalhydraulic coupled system with pin-by-pin calculation for PWR core, Nucl. Eng. Technol. 55 (9) (2023) 3213-3228.
  9. J. Yoon, H.C. Lee, H.G. Joo, H.S. Kim, High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation, Nucl. Eng. Technol. 53 (11) (2021) 3543-3562.
  10. J.I. Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (7) (2008) 668-682.
  11. H. Hong, H.G. Joo, Thorough analyses and resolution of various errors in pinhomogenized multigroup core calculation, Ann. Nucl. Energy 163 (2021) 108502.
  12. A. Hebert, A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 113 (3) (1993) 227-238.
  13. H. Yu, H. Hong, J. Yoon, Application of modified 2D/1D decoupling method in the pin-wise core analysis, in: KNS 2023 Spring, Jeju, Korea, 2023.
  14. T. Kozlowski, T. Downar, PWR MOX/UO2 core transient benchmark [Online]. Available: https://www.oecd-nea.org/science/wprs/MOX-UOX-transients/benchmark_documents/final_report/mox-uo2-bench.pdf, 2006.
  15. J.I. Yoon, J.H. Kim, H.G. Joo, Investigation of multigroup effect in transient calculation to determine hottest pin enthalpy, in: M&C 2009, 2009. Saratoga Springs, New York, USA.
  16. T. Downar, et al., PARCS v2.6 U.S. NRC Core Neutronics Simulator THEORY MANUAL, 2004 [Online]. Available: https://engineering.purdue.edu/PARCS/Code/Manual/Theory/PDF/PARCS_TheoryManual.pdf.
  17. D. Bernard, A. Calame, J.-M. Palau, LWR-UOx Doppler reactivity coefficient: best estimate plus (nuclear and atomic sources of) uncertainties, in: M&C 2017, Jeju, Korea, 2017.
  18. G. Grandi, K. Smith, Z. Xu, J. Rhodes, Effect of CASMO-5 cross-section data and Doppler temperature definitions on LWR reactivity initiated accidents, in: PHYSOR 2010, 2010. Pittsburgh, Pennsylvania, USA.