Acknowledgement
This work was supported by the National Natural Science Foundation of China (11975097).
References
- E.E. Lewis, W.F. Miller, Computational Methods of Neutron Transport, John Wiley & Sons, Inc., New Jersey, 1984.
- H.K. Park, Coupled Space-Angle Adaptivity and Goal-Oriented Error Control for Radiation Transport Calculations, Georgia Institute of Technology, Georgia, 2006.
- K. Rupp, T. Grasser, et al., Adaptive Variable-Order Spherical Harmonics Expansion of the Boltzmann Transport Equation, International Conference on Simulation of Semiconductor Processes and Devices, Osaka, 2011.
- M.A. Goffin, A.G. Buchan, et al., Goal-based angular adaptivity applied to the spherical harmonics discretisation of the neutral particle transport equation, Ann. Nucl. Energy 71 (9) (2014) 60-80. https://doi.org/10.1016/j.anucene.2014.03.030
- S. Dargaville, A.G. Buchan, et al., Angular adaptivity with spherical harmonics for Boltzmann transport, J. Comput. Phys. 397 (2019), 108846.
- A.G. Buchan, C.C. Pain, et al., Self-adaptive spherical wavelets for angular discretizations of the Boltzmann transport equation, Nucl. Sci. Eng. 158 (3) (2008) 244-263. https://doi.org/10.13182/NSE08-A2751
- M.A. Goffin, A.G. Buchan, S. Dargaville, et al., Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation, J. Comput. Phys. 281 (2015) 1032-1062. https://doi.org/10.1016/j.jcp.2014.10.063
- S. Dargaville, A.G. Buchan, et al., Scalable angular adaptivity for Boltzmann transport, J. Comput. Phys. 406 (2019), 109124.
- S. Dargaville, R.P. Smedley-Stevenson, P.N. Smith, et al., Goal-based angular adaptivity for Boltzmann transport in the presence of ray-effects, J. Comput. Phys. 421 (2020), 109759.
- J.C. Stone, Adaptive Discrete-Ordinates Algorithms and Strategies, Texas A&M University, Texas, 2007.
- J.J. Jarrell, An Adaptive Angular Discretization Method for Neutral-Particle Transport in Three-Dimensional Geometries, Texas A&M University, Texas, 2010.
- C.Y. Lau, M.L. Adams, Discrete ordinates quadratures based on linear and quadratic discontinuous finite elements over spherical quadrilaterals, Nucl. Sci. Eng. 185 (1) (2017) 36-52. https://doi.org/10.13182/NSE16-28
- N. Dai, B. Zhang, Y.X. Chen, Discontinuous finite-element quadrature sets based on icosahedron for the discrete ordinates method, Nucl. Eng. Technol. 52 (6) (2020) 1137-1147. https://doi.org/10.1016/j.net.2019.11.025
- C.Y. Lau, Adaptive Discrete-Ordinates Quadratures Based on Discontinuous Finite Elements over Spherical Quadrilaterals, Texas A&M University, Texas, 2016.
- N. Dai, B. Zhang, Y.X. Chen, et al., Adaptive discontinuous finite element quadrature sets over an icosahedron for discrete ordinates method, Nucl. Sci. Tech. 32 (2021) 98.
- J. Kophazi, D. Lathouwers, A space-angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement, J. Comput. Phys. 297 (2015) 637-668. https://doi.org/10.1016/j.jcp.2015.05.031
- N. Dai, B. Zhang, et al., High-degree discontinuous finite element discrete quadrature sets for the Boltzmann transport equation, Prog. Nucl. Energy 153 (2022), 104403.
- Y. Wang, J. Ragusa, Application of hp adaptivity to the multigroup diffusion equations, Nucl. Sci. Eng. 161 (1) (2009) 22-48. https://doi.org/10.13182/NSE161-22
- K. Atkinson, W. Han, Spherical Harmonics and Approximations on the Unit Sphere: an Introduction, Springer Verlag, Berlin Heidelberg, 2012.
- B.G. Carlson, C.E. Lee, Mechanical Quadrature and the Transport Equation, Los Alamos Scientific Lab., 1961. Report LAMS-2573.
- W.F. Walters, Use of the Chebyshev-Legendre Quadrature Set in Discrete Ordinates Codes, Los Alamos Scientific Lab., 1985. Report LA-UR-87-3621.
- B. Zhang, L. Zhang, C. Liu, et al., Goal-oriented regional angular adaptive algorithm for the SN equations, Nucl. Sci. Eng. 189 (2) (2018) 120-134. https://doi.org/10.1080/00295639.2017.1394085
- K. Kobayashi, N. Sugimura, Y. Nagaya, 3D radiation transport benchmark problems and results for simple geometries with void region, Prog. Nucl. Energy 39 (2) (2001) 119-144, 2001. https://doi.org/10.1016/S0149-1970(01)00007-5