• 제목/요약/키워드: meromorphic solutions

검색결과 33건 처리시간 0.019초

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1095-1113
    • /
    • 2020
  • In this paper, we investigate the transcendental meromorphic solutions for the nonlinear differential equations $f^nf^{(k)}+Q_{d_*}(z,f)=R(z)e^{{\alpha}(z)}$ and fnf(k) + Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z), where $Q_{d_*}(z,f)$ and Qd(z, f) are differential polynomials in f with small functions as coefficients, of degree d* (≤ n - 1) and d (≤ n - 2) respectively, R, p1, p2 are non-vanishing small functions of f, and α, α1, α2 are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of these kinds of meromorphic solutions and their possible forms of the above equations.

MEROMORPHIC SOLUTIONS OF A COMPLEX DIFFERENCE EQUATION OF MALMQUIST TYPE

  • Zhang, Ran-Ran;Huang, Zhi-Bo
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1735-1748
    • /
    • 2014
  • In this paper, we investigate the finite order transcendental meromorphic solutions of complex difference equation of Malmquist type $$\prod_{i=1}^{n}f(z+c_i)=R(z,f)$$, where $c_1,{\ldots},c_n{\in}\mathbb{C}{\backslash}\{0\}$, and R(z, f) is an irreducible rational function in f(z) with meromorphic coefficients. We obtain some results on deficiencies of the solutions. Using these results, we prove that the growth order of the finite order solution f(z) is 1, if f(z) has Borel exceptional values $a({\in}\mathbb{C})$ and ${\infty}$. Moreover, we give the forms of f(z).

A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Qi, Xiaoguang;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.597-607
    • /
    • 2019
  • In this article, we consider properties of transcendental meromorphic solutions of the complex differential-difference equation $$P_n(z)f^{(n)}(2+{\eta}_n)+{\cdots}+P_1(z)f^{\prime}(z+{\eta}_1)+P_0(z)f(z+{\eta}_0)=0$$, and its non-homogeneous equation. Our results extend earlier results by Liu et al. [9].

ON GROWTH PROPERTIES OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF HIGHER ORDER

  • Biswas, Nityagopal;Datta, Sanjib Kumar;Tamang, Samten
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1245-1259
    • /
    • 2019
  • In the paper, we study the growth properties of meromorphic solutions of higher order linear differential equations with entire coefficients of [p, q] - ${\varphi}$ order, ${\varphi}$ being a non-decreasing unbounded function and establish some new results which are improvement and extension of some previous results due to Hamani-Belaidi, He-Zheng-Hu and others.

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.

EXPRESSIONS OF MEROMORPHIC SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR COMPLEX DIFFERENTIAL EQUATIONS

  • Chen, Jun-Fan;Lian, Gui
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.1061-1073
    • /
    • 2020
  • In this paper, the expressions of meromorphic solutions of the following nonlinear complex differential equation of the form $$f^n+Qd(z,f)=\sum\limits_{i=1}^{3}pi(z)e^{{\alpha}_i(z)}$$ are studied by using Nevanlinna theory, where n ≥ 5 is an integer, Qd(z, f) is a differential polynomial in f of degree d ≤ n - 4 with rational functions as its coefficients, p1(z), p2(z), p3(z) are non-vanishing rational functions, and α1(z), α2(z), α3(z) are nonconstant polynomials such that α'1(z), α'2(z), α'3(z) are distinct each other. Moreover, examples are given to illustrate the accuracy of the condition.

THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.795-814
    • /
    • 2021
  • In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: fn + P(f) = R(z)eα(z) and fn + P*(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where P(f) and P*(f) are differential polynomials in f of degree n - 1 with coefficients being small functions and rational functions respectively, R is a non-vanishing small function of f, α is a nonconstant entire function, p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant polynomials. Particularly, we consider the solutions of the second equation when p1, p2 are nonzero constants, and deg α1 = deg α2 = 1. Our results are improvements and complements of Liao ([9]), and Rong-Xu ([11]), etc., which partially answer a question proposed by Li ([7]).

THE EXTENSION OF THE SUFFICIENT CONDITION FOR UNIVALENCE

  • An, Jong-Su
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권2호
    • /
    • pp.141-148
    • /
    • 1995
  • In this paper we shall consider function p(z) analytic in the open unit circle D and the solutions y(z) of the differential equation y"(Z) + p(z)y(z) = 0. (1.1) The ratio f(z) = u(z)/v(z) of any two independent solutions u(z) and v(z) of (1.1) will be function f(z), meromorphic in D with only simple poles, and such that f'(z) (equation omitted) 0. We shall say that a meromorphic function which satisfies these two condition belongs to the restricted class.(omitted)

  • PDF